
MQAUSXMQAUSX
Queue Manager ToQueue Manager To

Queue ManagerQueue Manager
Configuration ManualConfiguration Manual

Capitalware Inc.
Unit 11, 1673 Richmond Street,

PMB524
London, Ontario N6G2N3

Canada
sales@capitalware.com

https://www.capitalware.com

Last Updated: January 2021.
© Copyright Capitalware Inc. 2005, 2021.

MQAUSX Queue Manager To Queue Manager Configuration Manual Page ii

Table of Contents

1 INTRODUCTION...1

1.1 OVERVIEW...1
1.1.1 Client-Side Security Exit..1
1.1.2 Server-Side Security Exit...1

2 QUEUE MANAGER TO QUEUE MANAGER OVERVIEW..4

2.1 SENDER AND RECEIVER CHANNEL PAIR...4
2.2 SERVER AND REQUESTER CHANNEL PAIR...5

3 CONFIGURING A SENDER CHANNEL...6

3.1 WINDOWS..6
3.2 UNIX AND LINUX 32-BIT...7
3.3 UNIX AND LINUX 64-BIT...8
3.4 IBM I...9

4 CONFIGURING A RECEIVER CHANNEL..10

4.1 WINDOWS..10
4.2 UNIX AND LINUX 32-BIT...11
4.3 UNIX AND LINUX 64-BIT...11
4.4 IBM I...12

5 CONFIGURING A SERVER CHANNEL...13

5.1 WINDOWS..13
5.2 UNIX AND LINUX 32-BIT...14
5.3 UNIX AND LINUX 64-BIT...15
5.4 IBM I...16

6 CONFIGURING A REQUESTER CHANNEL...17

6.1 WINDOWS..17
6.2 UNIX AND LINUX 32-BIT...18
6.3 UNIX AND LINUX 64-BIT...18
6.4 IBM I...19

7 APPENDIX A– ENCRYPTION..20

8 APPENDIX B – LICENSE AGREEMENT...21

9 APPENDIX C – NOTICES..23

MQAUSX Queue Manager To Queue Manager Configuration Manual Page iii

1 Introduction

1.1 Overview

MQ Authenticate User Security Exit (MQAUSX) is solution that allows a company to fully
authenticate a user who is accessing a IBM MQ resource. It authenticates the user's UserId and
Password (and possibly Domain Name) against the server's native OS system, LDAP server,
Microsoft's Active Directory, Quest Authentication Services, Centrify's DirectControl,
Unix/Linux PAM (Pluggable Authentication Module) or an encrypted MQAUSX FBA file.

The security exit will operate with IBM MQ v7.0, v7.1, v7.5, v8.0, v9.0, v9.1 and v9.2 in
Windows, Unix and Linux environments. It works with Server Connection, Client Connection,
Sender, Receiver, Server and Requestor channels of IBM MQ queue manager.

The MQ Authenticate User Security Exit solution is comprised of 2 components: client-side
security exit and server-side security exit.

1.1.1 Client-Side Security Exit

The client-side security exit first checks if the server-side exit is defined for the particular
channel. The client-side exit will receive a security token to be used in the encryption process of
the user's password. It will prompt the user for his / her UserId and Password (and domain name
for Windows), encrypt the data and send it to the server-side security exit.

For each connection attempt, the server-side security exit will verify that it is an acceptable client
exit attempting the connection. If so, then the server-side will send a unique security token.
When the server-side security exit receives the encrypted data, it will decrypt the incoming data
and then perform UserId and Password (and domain) authentication against the native OS
system, LDAP server, Microsoft's Active Directory, Quest Authentication Services, Centrify's
DirectControl, Unix/Linux PAM (Pluggable Authentication Module) or an encrypted MQAUSX
FBA file. If successful, the connection will be allowed.

1.1.2 Server-Side Security Exit

The server-side security exit supports the concept of 'Proxy IDs'. After a user has been
successfully authenticated against the native OS system, LDAP server, Microsoft's Active
Directory, Quest Authentication Services, Centrify's DirectControl, Unix/Linux PAM (Pluggable
Authentication Module) or an encrypted MQAUSX FBA file and the 'Proxy Mode' flag is set,
then the server-side security exit will look up the user's UserID in the Proxy file for their Proxy
ID. The Proxy ID will be used for all MQ interactions.

An MQAdmin can define a password for a queue manager. Hence, when enabled, a back-end
application and/or end-user would need to not only know their UserID and Password but also the
queue manager’s Password to successfully log in. Defining and requiring a queue manager
Password in MQAUSX is equivalent to adding perimeter security to your system.

MQAUSX Queue Manager To Queue Manager Configuration Manual Page 1

The server-side security exit has the ability to allow or restrict users from logging in with the
'mqm' or 'MUSR_MQADMIN' or 'QMQM' UserIDs. This is controlled by the server-side
security exit's property keyword 'Allowmqm'.

The server-side security exit has the capability to allow or limit the incoming channel
connections according to the name of the associated Server Connection channel (SVRCONN).
Each Server Connection channel can be allocated a maximum number of connections and the
server-side security exit will ensure that this maximum is not exceeded.

Client connections to a queue manager are limited by either channel name or the 'DefaultMCC'
property keyword in the initialization file. In today's use of J2EE applications, it is a possibility
that one J2EE application could overwhelm the queue manager with client connections, thus
preventing any connections being made from other applications.

The MQAdmin can enable Excessive Client Connections alerting system that counts the number
of connections over a period of time (i.e. Day / Hour / Minute) and writes a message to the log
when the count exceeds a particular value. If the keyword WriteToEventQueue is set to ‘Y’ then
an event message is also written to an event queue. ECC feature is designed to catch applications
that are poorly written, for example, applications that continuously connect and disconnect from
the queue manager for every message sent or received.

The server-side security exit has the ability to allow or restrict the incoming IP address,
hostname and/or SSL DN. The server-side security exit uses a regular expression parser to parse
the incoming client IP address, hostname, and/or SSL DN against a predefined regular
expression pattern.

The server-side security exit has the ability to allow or restrict the incoming UserID against a
group. A list of groups can be queried for the incoming UserID. The groups can be in the local
OS or a group file. If MQAUSX is authenticating against an LDAP server then the group
querying can be against the LDAP server.

For those channels where authentication is not required, the server-side security exit can be set to
not perform this function. This is controlled by the server-side security exit's property keyword
'NoAuth'.

The server-side security exit, when in non-authentication mode, has the ability to allow or restrict
users from connecting with a blank UserID value. This is controlled by the server-side security
exit's property keyword 'AllowBlankUserID'.

The server-side security exit, when in non-authentication mode, has the ability to allow or restrict
the incoming UserID. The server-side security exit uses a regular expression parser to parse the
incoming client UserID against a predefined regular expression pattern.

Note: Raspberry Pi is a Linux ARM 32-bit OS (Operating System). Hence, simply follow the
Linux 32-bit instructions for installing and using the solution on a Raspberry Pi.

MQAUSX Queue Manager To Queue Manager Configuration Manual Page 2

MQAUSX is 4 products in 1

1. If the client application is configured with the client-side security exit then the user
credentials are encrypted and sent to the remote queue manager. This is the best level of
security.

2. If the client application is not configured with the client-side security exit and the client-
side AND server-side are at MQ V8 then MQ V8 will encrypt the user credentials as they
flow from the client application to the queue manager.

3. If the client application is not configured with the client-side security exit then the user
credentials are sent in plain text to the remote queue manager. This feature is available
for Java/JMS, Java and C# DotNet client applications. For native applications (i.e. C/C+
+), then the application must use and populate the MQCSP structure with the UserID and
Password.

• Using MQAUSX with No Client-side Security Exit - Part 1 (coding examples)
http://www.capitalware.com/rl_blog/?p=638

• Using MQAUSX with No Client-side Security Exit - Part 2 (configuring tools like
MQ Explorer, SupportPac MO71, MQ Visual Edit, etc..)
http://www.capitalware.com/rl_blog/?p=659

4. If the MQAdmin sets the MQAUSX IniFile parameter NoAuth to Y then it functions just
like MQ Standard Security Exit (MQSSX). MQSSX does not authenticate. It filters the
incoming connection based on UserID, IP address, hostname and/or SSL DN.

MQAUSX Queue Manager To Queue Manager Configuration Manual Page 3

2 Queue Manager To Queue Manager Overview
This section provides an overview of how MQAUSX can authenticate the UserId and Password
of the connection request from one queue manager to any queue manager.

As mentioned in Chapter 1, MQAUSX is comprised of 2 MQ security exits: client-side security
exit and server-side security exit.

2.1 Sender and Receiver Channel Pair
As noted below (in yellow) in the diagram, the MQAUSX client-side security exit works with
the Sender (SDR) channel and the MQAUSX server-side security exit works with the Receiver
(RCVR) channel.

There is a Message Channel Agent (MCA) at each end of the channel. The MCA is a component
that handles the sending and receiving of messages between queue managers. Before the MCA
can send and receive messages, the UserId and Password must be authenticated as detailed
below:

 The MCA that is running the Sender channel will call MQAUSX client-side security exit
to send a security message that contains the UserId and encrypted Password across the
channel to the Receiver channel.

 The MCA that is running the Receiver channel will call MQAUSX server-side security
exit to authenticate the incoming UserId and encrypted Password.

After the UserId and Password has been successfully authenticated, the channel will go to a
'Running' state and the messages will flow along the channel.

The following diagram highlights security exits in an MQ environment:

MQAUSX Queue Manager To Queue Manager Configuration Manual Page 4

2.2 Server and Requester Channel Pair
As noted below (in yellow) in the diagram, the MQAUSX client-side security exit works with
the Server (SVR) channel and the MQAUSX server-side security exit works with the Requester
(RQSTR) channel.

There is a Message Channel Agent (MCA) at each end of the channel. The MCA is a component
that handles the sending and receiving of messages between queue managers. Before the MCA
can send and receive messages, the UserId and Password must be authenticated as detailed
below:

 The MCA that is running the Server channel will call MQAUSX client-side security exit
to send a security message that contains the UserId and encrypted Password across the
channel to the Requester channel.

 The MCA that is running the Requester channel will call MQAUSX server-side security
exit to authenticate the incoming UserId and encrypted Password.

After the UserId and Password has been successfully authenticated, the channel will go to a
'Running' state and the messages will flow along the channel.

The following diagram highlights security exits in an MQ environment:

MQAUSX Queue Manager To Queue Manager Configuration Manual Page 5

3 Configuring a Sender Channel
This section describes the necessary entries to enable the client-side security exit on a Sender
Channel. The client-side security exit and its data will be applied to 2 fields of the Sender
Channel. The MQ Administrator will need to update these 2 fields of the Sender Channel.

For more information on client-side IniFile parameters, please review Appendix A and for more
information on client-side encrypted file, review Appendix B of the MQAUSX Client-side
Configuration manual.

3.1 Windows
On Windows, SCYEXIT and SCYDATA will contain the following values assuming a default
install:

 SCYEXIT
C:\Capitalware\MQAUSX\mqausxclnt(ClntExit)

 SCYDATA - There are 3 ways to specify the UserId and Password:

1. By explicitly setting them in the SCYDATA
u=fred;p=abcdef

2. By setting them in a Plain Text IniFile file
C:\Capitalware\MQAUSX\clnt.ini

3. By setting them in an Encrypted file
C:\Capitalware\MQAUSX\clnt.enc

The following is an example of an MQSC command using a Plain Text IniFile for SCYDATA:
DEFINE CHANNEL ('QMA.TO.QMB.CHL') CHLTYPE(SDR) +
 TRPTYPE(TCP) +
 CONNAME(127.0.0.1(1415) +
 XMITQ(QMB.XMIT) +
 SCYEXIT('C:\Capitalware\MQAUSX\mqausxclnt(ClntExit)') +
 SCYDATA('C:\Capitalware\MQAUSX\clnt.ini') +
 REPLACE

MQAUSX Queue Manager To Queue Manager Configuration Manual Page 6

3.2 Unix and Linux 32-bit
On Unix and Linux, SCYEXIT and SCYDATA will contain the following values assuming a
default install:

 SCYEXIT
/var/mqm/exits/mqausxclnt(ClntExit)

 SCYDATA - There are 3 ways to specify the UserId and Password:

1. By explicitly setting them in the SCYDATA
u=fred;p=abcdef

2. By setting them in a Plain Text IniFile file
/var/mqm/exits/clnt.ini

3. By setting them in an Encrypted file
/var/mqm/exits/clnt.enc

The following is an example of an MQSC command using a Plain Text IniFile for SCYDATA:

DEFINE CHANNEL ('QMA.TO.QMB.CHL') CHLTYPE(SDR) +
 TRPTYPE(TCP) +
 CONNAME(127.0.0.1(1415) +
 XMITQ(QMB.XMIT) +
 SCYEXIT('/var/mqm/exits/mqausxclnt(ClntExit)') +
 SCYDATA('/var/mqm/exits/clnt.ini') +
 REPLACE

MQAUSX Queue Manager To Queue Manager Configuration Manual Page 7

3.3 Unix and Linux 64-bit
On Unix and Linux (excluding Linux x86), SCYEXIT and SCYDATA will contain the
following values assuming a default install:

 SCYEXIT
/var/mqm/exits64/mqausxclnt(ClntExit)

 SCYDATA - There are 3 ways to specify the UserId and Password:

1. By explicitly setting them in the SCYDATA
u=fred;p=abcdef

2. By setting them in a Plain Text IniFile file
/var/mqm/exits64/clnt.ini

3. By setting them in an Encrypted file
/var/mqm/exits64/clnt.enc

The following is an example of an MQSC command using a Plain Text IniFile for SCYDATA:

DEFINE CHANNEL ('QMA.TO.QMB.CHL') CHLTYPE(SDR) +
 TRPTYPE(TCP) +
 CONNAME(127.0.0.1(1415) +
 XMITQ(QMB.XMIT) +
 SCYEXIT('/var/mqm/exits64/mqausxclnt(ClntExit)') +
 SCYDATA('/var/mqm/exits64/clnt.ini') +
 REPLACE

MQAUSX Queue Manager To Queue Manager Configuration Manual Page 8

3.4 IBM i
On IBM i, SCYEXIT and SCYDATA will contain the following values assuming a default
install:

 SCYEXIT is made up of 10 characters for program name (padded with blanks) followed
by 10 characters for the LIBRARY name (padded with blanks).
MQAUSXCL MQAUSX

 SCYDATA - There are 3 ways to specify the UserId and Password:

1. By explicitly setting them in the SCYDATA
u=fred;p=abcdef

2. By setting them in a Plain Text IniFile file
clnt.ini

3. By setting them in an Encrypted file
clnt.enc

The following is an example of an MQSC command using a Plain Text IniFile for SCYDATA:

DEFINE CHANNEL ('QMA.TO.QMB.CHL') CHLTYPE(SDR) +
 TRPTYPE(TCP) +
 CONNAME(127.0.0.1(1415) +
 XMITQ(QMB.XMIT) +
 SCYEXIT('MQAUSXCL MQAUSX ') +
 SCYDATA('clnt.ini') +
 REPLACE

MQAUSX Queue Manager To Queue Manager Configuration Manual Page 9

4 Configuring a Receiver Channel
This section describes the necessary entries to enable the server-side security exit on a Receiver
Channel. The server-side security exit and its data will be applied to 2 fields of the Receiver
Channel. The MQ Administrator will need to update these 2 fields of the Receiver Channel.

For more information on server-side IniFile parameters, please review Appendix A of the
MQAUSX Server-side Installation and Operation manual.

4.1 Windows
On Windows, SCYEXIT and SCYDATA will contain the following values assuming a default
install:

 SCYEXIT
C:\Capitalware\MQAUSX\mqausx(SecExit)

 SCYDATA
C:\Capitalware\MQAUSX\mqausx.ini

The following is an example of an MQSC command for creating a Receiver Channel with the
server-side security exit and its data:

DEFINE CHANNEL ('QMA.TO.QMB.CHL') CHLTYPE(RCVR) +
 TRPTYPE(TCP) +
 SCYEXIT('C:\Capitalware\MQAUSX\mqausx(SecExit)') +
 SCYDATA('C:\Capitalware\MQAUSX\mqausx.ini') +
 REPLACE

MQAUSX Queue Manager To Queue Manager Configuration Manual Page 10

4.2 Unix and Linux 32-bit
On Unix and Linux, SCYEXIT and SCYDATA will contain the following values assuming a
default install:

 SCYEXIT
/var/mqm/exits/mqausx(SecExit)

 SCYDATA
/var/mqm/exits/mqausx.ini

The following is an example of an MQSC command for creating a Receiver Channel with the
server-side security exit and its data:

DEFINE CHANNEL ('QMA.TO.QMB.CHL') CHLTYPE(RCVR) +
 TRPTYPE(TCP) +
 SCYEXIT('/var/mqm/exits/mqausx(SecExit)') +
 SCYDATA('/var/mqm/exits/mqausx.ini') +
 REPLACE

4.3 Unix and Linux 64-bit
On Unix and Linux (excluding Linux x86), SCYEXIT and SCYDATA will contain the
following values assuming a default install:

 SCYEXIT
/var/mqm/exits64/mqausx(SecExit)

 SCYDATA
/var/mqm/exits64/mqausx.ini

The following is an example of an MQSC command for creating a Receiver Channel with the
server-side security exit and its data:

DEFINE CHANNEL ('QMA.TO.QMB.CHL') CHLTYPE(RCVR) +
 TRPTYPE(TCP) +
 SCYEXIT('/var/mqm/exits64/mqausx(SecExit)') +
 SCYDATA('/var/mqm/exits64/mqausx.ini') +
 REPLACE

MQAUSX Queue Manager To Queue Manager Configuration Manual Page 11

4.4 IBM i
On IBM i, SCYEXIT and SCYDATA will contain the following values assuming a default
install:

 SCYEXIT is made up of 10 characters for program name (padded with blanks) followed
by 10 characters for the LIBRARY name (padded with blanks).
MQAUSX MQAUSX

 SCYDATA
mqausx.ini

The following is an example of an MQSC command using a Plain Text IniFile for SCYDATA:

DEFINE CHANNEL ('QMA.TO.QMB.CHL') CHLTYPE(RCVR) +
 TRPTYPE(TCP) +
 SCYEXIT('MQAUSX MQAUSX ') +
 SCYDATA('mqausx.ini') +
 REPLACE

MQAUSX Queue Manager To Queue Manager Configuration Manual Page 12

5 Configuring a Server Channel
This section describes the necessary entries to enable the client-side security exit on a Server
Channel. The client-side security exit and its data will be applied to 2 fields of the Server
Channel. The MQ Administrator will need to update these 2 fields of the Server Channel.

For more information on client-side IniFile parameters, please review Appendix A and for more
information on client-side encrypted file, review Appendix B of the MQAUSX Client-side
Configuration manual.

5.1 Windows
On Windows, SCYEXIT and SCYDATA will contain the following values assuming a default
install:

 SCYEXIT
C:\Capitalware\MQAUSX\mqausxclnt(ClntExit)

 SCYDATA - There are 3 ways to specify the UserId and Password:

1. By explicitly setting them in the SCYDATA
u=fred;p=abcdef

2. By setting them in a Plain Text IniFile file
C:\Capitalware\MQAUSX\clnt.ini

3. By setting them in an Encrypted file
C:\Capitalware\MQAUSX\clnt.enc

The following is an example of an MQSC command using a Plain Text IniFile for SCYDATA:
DEFINE CHANNEL ('QMA.TO.QMB.CHL') CHLTYPE(SVR) +
 TRPTYPE(TCP) +
 CONNAME(127.0.0.1(1415) +
 XMITQ(QMB.XMIT) +
 SCYEXIT('C:\Capitalware\MQAUSX\mqausxclnt(ClntExit)') +
 SCYDATA('C:\Capitalware\MQAUSX\clnt.ini') +
 REPLACE

MQAUSX Queue Manager To Queue Manager Configuration Manual Page 13

5.2 Unix and Linux 32-bit
On Unix and Linux, SCYEXIT and SCYDATA will contain the following values assuming a
default install:

 SCYEXIT
/var/mqm/exits/mqausxclnt(ClntExit)

 SCYDATA - There are 3 ways to specify the UserId and Password:

1. By explicitly setting them in the SCYDATA
u=fred;p=abcdef

2. By setting them in a Plain Text IniFile file
/var/mqm/exits/clnt.ini

3. By setting them in an Encrypted file
/var/mqm/exits/clnt.enc

The following is an example of an MQSC command using a Plain Text IniFile for SCYDATA:

DEFINE CHANNEL ('QMA.TO.QMB.CHL') CHLTYPE(SVR) +
 TRPTYPE(TCP) +
 CONNAME(127.0.0.1(1415) +
 XMITQ(QMB.XMIT) +
 SCYEXIT('/var/mqm/exits/mqausxclnt(ClntExit)') +
 SCYDATA('/var/mqm/exits/clnt.ini') +
 REPLACE

MQAUSX Queue Manager To Queue Manager Configuration Manual Page 14

5.3 Unix and Linux 64-bit
On Unix and Linux (excluding Linux x86), SCYEXIT and SCYDATA will contain the
following values assuming a default install:

 SCYEXIT
/var/mqm/exits64/mqausxclnt(ClntExit)

 SCYDATA - There are 3 ways to specify the UserId and Password:

1. By explicitly setting them in the SCYDATA
u=fred;p=abcdef

2. By setting them in a Plain Text IniFile file
/var/mqm/exits64/clnt.ini

3. By setting them in an Encrypted file
/var/mqm/exits64/clnt.enc

The following is an example of an MQSC command using a Plain Text IniFile for SCYDATA:

DEFINE CHANNEL ('QMA.TO.QMB.CHL') CHLTYPE(SVR) +
 TRPTYPE(TCP) +
 CONNAME(127.0.0.1(1415) +
 XMITQ(QMB.XMIT) +
 SCYEXIT('/var/mqm/exits64/mqausxclnt(ClntExit)') +
 SCYDATA('/var/mqm/exits64/clnt.ini') +
 REPLACE

MQAUSX Queue Manager To Queue Manager Configuration Manual Page 15

5.4 IBM i
On IBM i, SCYEXIT and SCYDATA will contain the following values assuming a default
install:

 SCYEXIT is made up of 10 characters for program name (padded with blanks) followed
by 10 characters for the LIBRARY name (padded with blanks).
MQAUSXCL MQAUSX

 SCYDATA - There are 3 ways to specify the UserId and Password:

4. By explicitly setting them in the SCYDATA
u=fred;p=abcdef

5. By setting them in a Plain Text IniFile file
clnt.ini

6. By setting them in an Encrypted file
clnt.enc

The following is an example of an MQSC command using a Plain Text IniFile for SCYDATA:

DEFINE CHANNEL ('QMA.TO.QMB.CHL') CHLTYPE(SVR) +
 TRPTYPE(TCP) +
 CONNAME(127.0.0.1(1415) +
 XMITQ(QMB.XMIT) +
 SCYEXIT('MQAUSXCL MQAUSX ') +
 SCYDATA('clnt.ini') +
 REPLACE

MQAUSX Queue Manager To Queue Manager Configuration Manual Page 16

6 Configuring a Requester Channel
This section describes the necessary entries to enable the server-side security exit on a Requester
Channel. The server-side security exit and its data will be applied to 2 fields of the Requester
Channel. The MQ Administrator will need to update these 2 fields of the Requester Channel.

For more information on server-side IniFile parameters, please review Appendix A of the
MQAUSX Server-side Installation and Operation manual.

6.1 Windows
On Windows, SCYEXIT and SCYDATA will contain the following values assuming a default
install:

 SCYEXIT
C:\Capitalware\MQAUSX\mqausx(SecExit)

 SCYDATA
C:\Capitalware\MQAUSX\mqausx.ini

The following is an example of an MQSC command for creating a Requester Channel with the
server-side security exit and its data:

DEFINE CHANNEL ('QMA.TO.QMB.CHL') CHLTYPE(RQSTR) +
 TRPTYPE(TCP) +
 CONNAME(127.0.0.1(1415) +
 SCYEXIT('C:\Capitalware\MQAUSX\mqausx(SecExit)') +
 SCYDATA('C:\Capitalware\MQAUSX\mqausx.ini') +
 REPLACE

MQAUSX Queue Manager To Queue Manager Configuration Manual Page 17

6.2 Unix and Linux 32-bit
On Unix and Linux, SCYEXIT and SCYDATA will contain the following values assuming a
default install:

 SCYEXIT
/var/mqm/exits/mqausx(SecExit)

 SCYDATA
/var/mqm/exits/mqausx.ini

The following is an example of an MQSC command for creating a Requester Channel with the
server-side security exit and its data:

DEFINE CHANNEL ('QMA.TO.QMB.CHL') CHLTYPE(RQSTR) +
 TRPTYPE(TCP) +
 CONNAME(127.0.0.1(1415) +
 SCYEXIT('/var/mqm/exits/mqausx(SecExit)') +
 SCYDATA('/var/mqm/exits/mqausx.ini') +
 REPLACE

6.3 Unix and Linux 64-bit
On Unix and Linux (excluding Linux x86), SCYEXIT and SCYDATA will contain the
following values assuming a default install:

 SCYEXIT
/var/mqm/exits64/mqausx(SecExit)

 SCYDATA
/var/mqm/exits64/mqausx.ini

The following is an example of an MQSC command for creating a Requester Channel with the
server-side security exit and its data:

DEFINE CHANNEL ('QMA.TO.QMB.CHL') CHLTYPE(RQSTR) +
 TRPTYPE(TCP) +
 CONNAME(127.0.0.1(1415) +
 SCYEXIT('/var/mqm/exits64/mqausx(SecExit)') +
 SCYDATA('/var/mqm/exits64/mqausx.ini') +
 REPLACE

MQAUSX Queue Manager To Queue Manager Configuration Manual Page 18

6.4 IBM i
On IBM i, SCYEXIT and SCYDATA will contain the following values assuming a default
install:

 SCYEXIT is made up of 10 characters for program name (padded with blanks) followed
by 10 characters for the LIBRARY name (padded with blanks).
MQAUSX MQAUSX

 SCYDATA
mqausx.ini

The following is an example of an MQSC command using a Plain Text IniFile for SCYDATA:

DEFINE CHANNEL ('QMA.TO.QMB.CHL') CHLTYPE(RQSTR) +
 TRPTYPE(TCP) +
 SCYEXIT('MQAUSX MQAUSX ') +
 SCYDATA('mqausx.ini') +
 REPLACE

MQAUSX Queue Manager To Queue Manager Configuration Manual Page 19

7 Appendix A– Encryption
MQ Authenticate User Security Exit Solution uses the Advanced Encryption Standard (AES) for
encryption and decryption of the user's password between the client-side security exit and the
server-side security exit.

Wikipedia

the Advanced Encryption Standard (AES) is an encryption standard adopted by the U.S.
government. The standard comprises three block ciphers, AES-128, AES-192 and AES-
256, adopted from a larger collection originally published as Rijndael. Each AES cipher
has a 128-bit block size, with key sizes of 128, 192 and 256 bits, respectively. The AES
ciphers have been analyzed extensively and are now used worldwide, as was the case
with its predecessor,[3] the Data Encryption Standard (DES).

AES was announced by National Institute of Standards and Technology (NIST) as U.S.
FIPS PUB 197 (FIPS 197) on November 26, 2001 after a 5-year standardization process
in which fifteen competing designs were presented and evaluated before Rijndael was
selected as the most suitable (see Advanced Encryption Standard process for more
details). It became effective as a Federal government standard on May 26, 2002 after
approval by the Secretary of Commerce. It is available in many different encryption
packages. AES is the first publicly accessible and open cipher approved by the NSA for
top secret information

MQAUSX Queue Manager To Queue Manager Configuration Manual Page 20

8 Appendix B – License Agreement
This is a legal agreement between you (either an individual or an entity) and Capitalware Inc. By
opening the sealed software packages (if appropriate) and/or by using the SOFTWARE, you
agree to be bound by the terms of this Agreement. If you do not agree to the terms of this
Agreement, promptly return the disk package and accompanying items for a full refund.
SOFTWARE LICENSE

1. GRANT OF LICENSE. This License Agreement (License) permits you to use one copy of the
software product identified above, which may include user documentation provided in on-line or
electronic form (SOFTWARE). The SOFTWARE is licensed as a single product, to an
individual user, or group of users for Muliple User Licenses and Site Licenses. This Agreement
requires that each user of the SOFTWARE be Licensed, either individually, or as part of a group.
A Multi-User License provides for a specified number of users to use this SOFTWARE at any
time. This does not provide for concurrent user Licensing. Each user of this SOFTWARE must
be covered either individually, or as part of a group Multi-User License. The SOFTWARE is in
use on a computer when it is loaded into the temporary memory (i.e. RAM) or installed into the
permanent memory (e.g. hard disk) of that computer. This software may be installed on a
network provided that appropriate restrictions are in place limiting the use to registered users
only.

2. COPYRIGHT. The SOFTWARE is owned by Capitalware Inc. and is protected by United
States Of America and Canada copyright laws and international treaty provisions. You may not
copy the printed materials accompanying the SOFTWARE (if any), nor print copies of any user
documentation provided in on-line or electronic form. You must not redistribute the registration
codes provided, either on paper, electronically, or as stored in the files mqausx.ini or any other
form.

3. OTHER RESTRICTIONS. The registration notification provided, showing your authorization
code and this License is your proof of license to exercise the rights granted herein and must be
retained by you. You may not rent or lease the SOFTWARE, but you may transfer your rights
under this License on a permanent basis, provided you transfer this License, the SOFTWARE
and all accompanying printed materials, retain no copies, and the recipient agrees to the terms of
this License. You may not reverse engineer, decompile, or disassemble the SOFTWARE, except
to the extent the foregoing restriction is expressly prohibited by applicable law.

LIMITED WARRANTY

LIMITED WARRANTY. Capitalware Inc. warrants that the SOFTWARE will perform
substantially in accordance with the accompanying printed material (if any) and on-line
documentation for a period of 365 days from the date of receipt.

CUSTOMER REMEDIES. Capitalware Inc. entire liability and your exclusive remedy shall be,
at Capitalware Inc. option, either (a) return of the price paid or (b) repair or replacement of the
SOFTWARE that does not meet this Limited Warranty and that is returned to Capitalware Inc.
with a copy of your receipt. This Limited Warranty is void if failure of the SOFTWARE has
resulted from accident, abuse, or misapplication. Any replacement SOFTWARE will be

MQAUSX Queue Manager To Queue Manager Configuration Manual Page 21

warranted for the remainder of the original warranty period or thirty (30) days, whichever is
longer.

NO OTHER WARRANTIES. To the maximum extent permitted by applicable law, Capitalware
Inc. disclaims all other warranties, either express or implied, including but not limited to implied
warranties of merchantability and fitness for a particular purpose, with respect to the
SOFTWARE and any accompanying written materials.

NO LIABILITY FOR CONSEQUENTIAL DAMAGES. To the maximum extent permitted by
applicable law, in no event shall Capitalware Inc. be liable for any damages whatsoever
(including, without limitation, damages for loss of business profits, business interruption, loss of
business information, or other pecuniary loss) arising out of the use or inability to use the
SOFTWARE, even if Capitalware Inc. has been advised of the possibility of such damages.

MQAUSX Queue Manager To Queue Manager Configuration Manual Page 22

9 Appendix C – Notices

Trademarks:

AIX, IBM, MQSeries, OS/2 Warp, OS/400, IBM i, MVS, OS/390, WebSphere, IBM MQ and z/
OS are trademarks of International Business Machines Corporation.

HP-UX is a trademark of Hewlett-Packard Company.

Intel is a registered trademark of Intel Corporation.

Java, J2SE, J2EE, Sun and Solaris are trademarks of Sun Microsystems Inc.

Linux is a trademark of Linus Torvalds.

Mac OS X is a trademark of Apple Computer Inc.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation.

UNIX is a registered trademark of the Open Group.

WebLogic is a trademark of BEA Systems Inc.

MQAUSX Queue Manager To Queue Manager Configuration Manual Page 23

	1 Introduction
	1.1 Overview
	1.1.1 Client-Side Security Exit
	1.1.2 Server-Side Security Exit

	2 Queue Manager To Queue Manager Overview
	2.1 Sender and Receiver Channel Pair
	2.2 Server and Requester Channel Pair

	3 Configuring a Sender Channel
	3.1 Windows
	3.2 Unix and Linux 32-bit
	3.3 Unix and Linux 64-bit
	3.4 IBM i

	4 Configuring a Receiver Channel
	4.1 Windows
	4.2 Unix and Linux 32-bit
	4.3 Unix and Linux 64-bit
	4.4 IBM i

	5 Configuring a Server Channel
	5.1 Windows
	5.2 Unix and Linux 32-bit
	5.3 Unix and Linux 64-bit
	5.4 IBM i

	6 Configuring a Requester Channel
	6.1 Windows
	6.2 Unix and Linux 32-bit
	6.3 Unix and Linux 64-bit
	6.4 IBM i

	7 Appendix A– Encryption
	8 Appendix B – License Agreement
	9 Appendix C – Notices

