MQ Channel Encryption
Programming Guide

Capitalware Inc.
Unit 11, 1673 Richmond Street, PMB524
London, Ontario N6G2N3

> Canada
sales@capitalware.com
ap l ta lwa re https://www.capitalware.com

Inc.

Last Updated: January 2021.
© Copyright Capitalware Inc. 2010, 2021.

MQCE Programming Guide Page ii

Table of Contents

1 INTRODUCTION...uuiiiiiiiuinssnicseissns 1
LoT OVERVIEW. .ttt ettt ettt et ettt e h e et e s bt et e sb e et esab e e bt e sabteesbbeeesanneeas 1
1.2 EXECUTIVE SUMMARY ...ceeiutttteeeiitteeeeitteeeesousteeesssseeesssssseeesssssseeesssssesesessssssesssssseesssssessssssnnsnses 2
1.3 MESSAGE DIAGRAM (LOGICAL VIEW)....iiitiiiiiieiiiieeeiieectte ettt ee et e sae e ieeesaeee e e e e sevaeeeeeenes 2
1.4 CONTEXT DIAGRAM (LOGICAL VIEW)...cuuiiiiiiiiieiieiiie ettt ettt ettt et e e e e eibeee e 3

2 C LANGUARGEuuuiutiittiitecnnticniisnessecssisssissssisssessssisssssssssssssssssssssssssssssssssssessssssssssssassssssssass 4
2.1 MQUONNL. ...ttt ettt e et e bt e st e e bt e eab e e b eesabe e beeeabe e nbeeesnbeeesnnbeeesnneens 5

D B BN 717 5 PRSPPI 5
2.1.2 PAFAM@LEYS.........ooeeeeeeeeeeie et e e e e e e e e e et e e e et e e e e entaaeeeenaaaaaaaeeaens 5
2.1.3 LAngUuAZe INVOCALIONS..............ccooeeieeieeeiieeeieeeie et eeeeeee et e saaee e 6
2.2 MQEUONNX ...ttt ettt et e bt e st e e bt e ae e et e e saeeeabeesateeabeesabeeaseesseeenbeesaseenseasnseenseennseenne 7
D BN 717 & PR PRPR 7
2.2.2 PAFAM@LEYS.........ooeeeeeeeeeiiee e eeeee e et e e e e e e et e e e et e e e e et e e e e sntaaeeeennsbaaaaaeeeens 7
2.2.3 Language INVOCALIONS.cccueiiiiiiiiiii ittt 8

3 CH+ LANGUAGE.....uuiitiiinnnintinninnssssissssisssissssssssisssssssssssssssssssssssssssesssssssssssssssssssssssnss 10

3.1 IMQQUEUEMANAGER (MQUONN).....uiiiiiiieiiieecite ettt ettt et e eibeeesnaeeseseesnnaaee s 11
e Lo d SYREAX.c..ccioiiiiiiiiii e 11
31,2 PAVAMLETS. ...t ettt ettt 11
3.1.3 Language INVOCALIONS..................cocuiiiiiiiiii ettt a e 12

3.2 IMQQUEUEMANAGER AND IMQCHANNEL (MQCONNX).....oiiieiiieeiieeeiie e 13
320 L SYRIAX.c..cciiiiiiii e e 13
3.2.2 PAVAMIETS. ...ttt ettt ettt ettt 13
3.2.3 Language INVOCALIONS..............c..ccoiuiiiiiieiii ettt ettt a e 14

4 JAVA LANGUAGE......uortiittitintnicninnnnstinnecssisssssssisssessssesssssssssssssssssssssassssssssasssssssssane 15
4.1 IBM MUQ BASE JAVA. ..ttt ettt ettt ettt et e et e et e e ettt e e e e e eantaaeee s 16

B BN 717 & PSP UPPPRR 16
G 1.2 PAVAMELETS...........cccuveeeeeeee ettt e et e et e e e e e e e et ae e e e ntaaaaaeeeeens 16
G 1.3 EXCODIIONS. ...ttt e et e e st e e e et e e ennaeeaeeenes 16
4.1.4 Language INVOCALIONS..............ccccuuiiiiieiiiie ettt ettt 17

4.2 IBM MQ BASE JMIS ...ttt e e et e e e et e e e e a e e e e aaaaaaaas 18
G200 SYTEQX....c..oooiiiiiiiiii et 18
4. 2.2 PAVAMIETS. ..ottt ettt ettt et 18
G.2.3 EXCOPIIONS. ...ttt ettt ettt et ettt e et e e e 18
4.2.4 Language INVOCALIONS.cc..ccecueeieiieeeiieeeeie st eeieeeetae et e e e eeateesaaeeaeeenes 19

5 NET C-SHARP LANGUAGE.......couiitiiiintinninnninsinssnisssissssiossissssssssssssssssssssssssssssssssens 20
5.1 MANAGED INET ENVIRONMENT.....cctttiitiieiiieeiiteeiteeeieeesiteesseeesteeessseeennseesnsseesssessnsseesnsnes 21

SuLid SYREQX....c..ooooiiiiiiiiiiiiie e 21
5. 1.2 PAFAIMEICYS. ...ttt et 21
5103 EXCOPIIONS. ...ttt ettt ettt et e e 21
5.1.4 Language INVOCALIONS................cccueeeuieaeeieeeeieeeieeeieeesae e teeesiseeesiaeeeiaeesaaee e e nnenees 22

6 APPENDIX A — SAMPLE CLIENT CHANNEL TABLE.......cciiniinnneicssnneecssnnnes 23

0.1 WINDOWS. ..ttt ettt ettt ettt st et e s bt e et e sab e et e e sbe e eabeesabeeabeenabeeeeneee 23

MQCE Programming Guide Page iii

6.2 UNix AND LINUX FOR IBM MQ 32-BIT.....ciiiiiiiiiieee ettt 23

6.3 UNix AND LINUX FOR IBM MQ 604-BIT.....cccuuviiiiiiiiiieeeiiee ettt e e e e e e e e e e e 23
0.4 JAVA APPLICATIONS. ...vvtteestrreeeesutreeessssseeesaassseesasssseeesassssesesssssseessssssssesessssseessssssssssssseeseeeeeees 23

7 APPENDIX B — SAMPLE MQUJNDNL....uiiiniiniinsnicssnnsssnsssssssasssssssssssssssssassssassssssssssssssssssssass 24
7.1 IMS QUEUE CONNECTION FACTORY (QCF) SAMPLE:.....cciiiiieiiieeiiieetiee e e 24
7.2 JMS QUEUE SAMPLE0tiiiiiittiieeeeiteeeeeiteeeeesireeeeeaaeeeeeesaseeeeasssseeeeassaeaeessssseseanssseeeesssaaaeeans 24

8 APPENDIX C - MQCE LANGUAGE FILES......cccievininnuinrensinsanssessesssnsssssssssassssssssssssasns 25
8.1 MQCE C SAMPLE FILES......uutiiiiiiiiiie ettt et e et e e et e e e e e raeeaeaaaaaeeaeas 26
8.1.1 List Of C SAMPLE fIlES.............ocooueieeiiiiiiiieeie e 26

8.2 MQCE CA+ SAMPLE FILES......utiiiiiiiiii ettt ettt et e e e e e e e e e e e e e e nanannnes 27
8.2.1 List Of CH+ SAMPLE fIlES..........cc..ooooeeeaeiieeiieeeeeeeee e 27

8.3 MQCE BASE JAVA & JMS SAMPLE FILES.....cciiiiiiiiiiiiiiii ettt 28
8.3.1 List 0f Java SAMPLe fIlES..............cccooviuvieiiiiioiiiee e 28

8.3.2 List of Java/IMS SAMPLE fles.............ccooovueiiuiiiiieiieiieeeeeie et 28

8.4 NET C-SHARP SAMPLE FILES.....ciiiiiiiiiiiiiiie ettt ee e e svee e e eaee e e e e e e e e e e s nnnes 30
8.4.1 List of NET C-Sharp SAmple files................ccooceecvaeieeiiaiieeiieiiie e e 30

8.5 MQCE VISUAL BASIC SAMPLE FILES.....ceiiiiiiiiiiiiiiiiiee ettt 31
8.5.1 List of Visual Basic SAMPLE fIles.............cc.ccceeeiiieieiiiiieeieeeiieee e 31

9 APPENDIX D — LICENSE AGREEMENTccoviniininninsinsenssesssessassssssassssssssssssssssssssssassses 32
10 APPENDIX E — NOTICES......uciiniinuinnninneisssiessasssssssssssssssssssssssssssssssssssssssasssssssssssssssssssssssss 34

MQCE Programming Guide Page iv

1 Introduction
1.1 Overview

MQ Channel Encryption (MQCE) provides encryption for MQ message data. In cryptography,
encryption is the process of transforming information into an unreadable form (encrypted data).
Decryption is the reverse process. It makes the encrypted information readable again. Only
those with the key (PassPhrase) can successfully decrypt the encrypted data.

MQCE provides encryption for message data, which flows between IBM MQ resources. MQCE
operates with IBM MQ v7.0, v7.1, v7.5, v8.0, v9.0, v9.1 and v9.2 in Windows, Unix, IBM i (OS/
400) and Linux environments. It operates with Sender, Receiver, Server, Requestor, Cluster-
Sender, Cluster-Receiver, Server Connection and Client Connection channels of the MQ queue
managers.

MQCE is a simple drop-in solution that provides cryptographic protection for MQ queue
managers. The protection can be queue manager to queue manager or client application to queue
manager.

1. Queue manager to queue manager protection means all messages flowing over a channel
between 2 queue managers will be encrypted.

2. Client application to queue manager protection means application-level message data
flowing between a MQ client application and queue manager will be encrypted.

The MQCE can be configured as a queue manager channel message exit or as a channel
sender/receive exit pair.

MQCE uses Advanced Encryption Standard (AES) to encrypt the data. AES is a data encryption
scheme, adopted by the US government, that uses three different key sizes (128-bit, 192-bit, and

256-bit). AES was announced by National Institute of Standards and Technology (NIST) as U.S.
FIPS PUB 197 (FIPS 197) on November 26, 2001 after a 5-year standardization process.

MQCE uses the SHA-2 to create a cryptographic hash function (digital signature) for the
message data.

Note: Raspberry Piis a Linux ARM 32-bit OS (Operating System). Hence, simply follow the
Linux 32-bit instructions for installing and using the solution on a Raspberry Pi.

MQCE Programming Guide Page 1

1.2 Executive Summary

The MQCE solution is an MQ encryption exit. It is available for a wide range of platforms:
AIX, HP-UX, IBM i, Linux, Solaris and Windows.

Major Features of MQCE:

* Easy to set up and configure (unlike SSL)

* No application changes required

* Can be configured as either queue manager to queue manager or client application to
queue manager solution

* For both modes, all message data flowing over a channel will be encrypted (nothing
missed or forgotten)

* Secure encryption/decryption methodology using AES with 128, 192 or 256-bit keys

* Uses the SHA-2 to create a cryptographic hash function (digital signature)

* Standard MQ feature, GET-with-Convert, is supported

* Provides high-level logging capability for encryption / decryption processing

1.3 Message Diagram (Logical View)

MQ Chanmel Encryption

Signed

Message
[ata
Message
[rata

Sign Only Encrypt Only Sign and Encrypt

MQCE Programming Guide Page 2

1.4 Context Diagram (Logical View)

Quene Manager to Queue Manager :

Wire Encryption

QmMar1 legrz
= — ==
e @ {SDR} % RCVR) @ \
MCA MCA | |
Gﬂ'ﬂl'ltl-l_l- QL OCALY
App A
App B
{—'—F&\ MCA <fRCVR> % {SDR} . MCA
{QLOCAL) MQCE @ MQCE 1T
OTY
Client Application to a Queue Manager : Wire Encryption
QMagr
= I
/ (QLOCAL)
Client MQ Client Q:@:{} MCA
Applicatiun {} MOQCE @ MQOCE E\

I

(QLOCAL}

MQCE Programming Guide

Page 3

2 C Language

For C Language, the programmer has 2 different methods to set the MQCE Send/Receive Exit
values.

1. If the programmer's application uses the MQCONN API, the user needs to use a CCDT
(Client Channel Definition Table) file.

2. If the programmer's application uses the MQCONNX API, the Send/Receive Exit values
can be set via MQCONNZX API call.

MQCE Programming Guide Page 4

2.1 MQCONN

It is assumed that the user has previously set up an entry in a CCDT file for use by the user's
application.

21.1 Syntax

MQCONN (QMName, HConn, CompCode, Reason)

2.1.2 Parameters

The MQCONN call has the following parameters as described below: QMName, HConn,
CompCode and Reason.

* QMName (char 48) - input
The name of the queue manager to which the application wants to connect

= HConn (MQHCONN) - output
This handle represents the connection to the queue manager.

= CompCode (MQLONG) - output
The completion code of the MQCONN API call

= Reason (MQLONG) - output
The reason code of the MQCONN API call

MQCE Programming Guide Page 5

2.1.3 Language Invocations

It is assumed that the user has previously set up an entry in a CCDT file for use by the user's
application.

2.1.3.1 C Language

MQHCONN HConn;

MQLONG CompCode;

MQLONG Reason;

char OMName [MQ Q MGR NAME LENGTH+1];

MQCONN (QMName,
&HConn,
&CompCode,
&Reason) ;

2.1.3.2 Visual Basic Language

Dim QMName As String
Dim Hconn As Long
Dim CompCode As Long
Dim Reason As Long

MQCONN QMName, Hconn, CompCode, Reason

MQCE Programming Guide Page 6

2.2 MQCONNX
This section describes how to use MQCONNX API to set the MQCE Send/Receive Exit values.

2.2.1 Syntax

MQCONNX (QMName, ConnectOptions, HConn, CompCode, Reason)

2.2.2 Parameters

The MQCONNX call has the following parameters as described below: QMName,
ConnectOptions , HConn, CompCode and Reason.

= QMName (char 48) - input
The name of the queue manager to which the application wants to connect

= ConnectOptions (MQHCONN) - input / output
The ConnectOptions allows the application to specify options relating to the connection to the
queue manager.

= HConn (MQHCONN) - output
This handle represents the connection to the queue manager.

= CompCode (MQLONG) - output
The completion code of the MQCONN API call

= Reason (MQLONG) - output
The reason code of the MQCONN API call

MQCE Programming Guide Page 7

2.2.3 Language Invocations

The MQCONNX API call is supported in the following programming languages (C and Visual

Basic) as shown below.

2.2.3.1 C Language

MQCNO ConnectOptions = {MQCNO_DEFAULT} ;

MQCD ClientConn = {MQCD CLIENT CONN DEFAULT} ;
MQHCONN HConn;

MQLONG CompCode;

MQLONG Reason;

char QMName [MQ Q MGR_NAME LENGTH+1] ;

char channelName [MQ CHANNEL NAME LENGTH+1];

char hostname[1024] ;

char exitName[1024]= "C:\\Capitalware\\MQCE\\mgce (CE)";

strncpy (ClientConn.ConnectionName,
hostname,
MO CONN_NAME LENGTH) ;

strncpy (ClientConn.ChannelName,
channelName,
MQ CHANNEL NAME LENGTH) ;

strncpy (ClientConn.SendExit,
exitName,
MQ EXIT NAME LENGTH) ;

strncpy (ClientConn.ReceiveExit,
exitName,
MQ EXIT NAME LENGTH) ;

ConnectOptions.ClientConnPtr = &ClientConn;
ConnectOptions.Version = MQCNO VERSION 6;

MQCONNX (QMName,
&ConnectOptions,
&HConn,
&CompCode,
&Reason) ;

MQCE Programming Guide

Page 8

2.2.3.2 Visual Basic Language

Dim CNOCD As MQCNOCD
Dim QMName As String
Dim Hconn As Long
Dim CompCode As Long
Dim Reason As Long

MQCNOCD_DEFAULTS CNOCD

CNOCD.ChannelDef.ConnectionName = GUI_hostname.Text
CNOCD.ChannelDef.ChannelName = GUI_chlName.Text
CNOCD.ChannelDef.Version = MQCD_ CURRENT VERSION
CNOCD.ChannelDef.SendExit = "C:\Capitalware\MQCE\mgce (CE)"
CNOCD.ChannelDef .ReceiveExit = "C:\Capitalware\MQCE\mgce (CE)"

MQCONNXAny QMName, CNOCD, Hconn, CompCode, Reason

MQCE Programming Guide Page 9

3 C++ Language

For C++ Language, the programmer has 2 different methods to set the MQCE Send/Receive Exit
values.

1. If the programmer's application uses the ImqQueueManager class, the user needs to use a
CCDT (Client Channel Definition Table) file.

2. If the programmer's application uses the ImqQueueManager and ImqChannel classes, the
Send/Receive Exit values can be set via ImqChannel class.

MQCE Programming Guide Page 10

3.1 ImqQueueManager (MQCONN)

It is assumed that the user has previously set up an entry in a CCDT file for use by the user's
application.

3.1.1 Syntax

ImgQueueManager mgr;
mgr.setName(QMName);
3.1.2 Parameters
The ImgQueueManager class require the following parameters as described below: QMName.

= QMName (char 48) - input
The name of the queue manager to which the application wants to connect

MQCE Programming Guide Page 11

3.1.3 Language Invocations

The ImgQueueManager class is supported in the following programming language (C++) as
shown below.

3.1.3.1 C++ Language

ImgQueueManager mgr;
char OMName [MQ QO MGR NAME LENGTH+1];

mgr . setName (QMName) ;
if (! mgr.connect())

{

return(1);

}

MQCE Programming Guide Page 12

3.2 ImgQueueManager and ImqChannel (MQCONNX)

This section describes how to use the ImqQueueManager and ImqChannel classes to set the
MQCE Send/Receive Exit values.

3.2.1 Syntax
ImgQueueManager mgr;
ImqChannel *pchannel;

mgr.setName(QMName);

pchannel -> setChannelName(ChannelName);
pchannel -> setConnectionName(ConnName);
pchannel -> setSendExitName(exitName);
pchannel -> setReceiveExitName(exitName);

3.2.2 Parameters

The ImqQueueManager and ImqChannel classes require the following parameters as described
below: QMName, Channelname, ConnName, ExitName and SecurityData.

= QMName (char 48) - input
The name of the queue manager to which the application wants to connect

= ChannelName (char 20) - input
The name of the channel to use for the connection

= ConnName (char 264) - input
The ConnName is the hostname or IP address and Port Number of the remote server where the

queue manager is located.

= ExitName (char 128) — input
The full path and name of the MQCE send/receive exit

MQCE Programming Guide Page 13

3.2.3 Language Invocations

The ImgQueueManager and ImqChannel classes are supported in the following programming
language (C++) as shown below.

3.2.3.1 C++ Language

ImgQueueManager mgr;

ImgChannel *pchannel = 0;

char QMName [MQ_Q MGR_NAME_LENGTH+1] ;

char channelName [MQ CHANNEL NAME LENGTH+1];

char hostname[1024] ;

char exitName[1024]="C:\\Capitalware\\MQCE\\mgce (CE) " ;

mgr . setName (QMName) ;

pchannel = new ImgChannel ;

pchannel -> setHeartBeatInterval(1);
pchannel -> setTransportType(MQXPT TCP) ;
pchannel -> setChannelName (channelName) ;
pchannel -> setConnectionName (hostname) ;
pchannel -> setSendExitName (exitName) ;
pchannel -> setReceiveExitName (exitName) ;
mgr . setChannelReference (pchannel);

if (! mgr.connect())

{
delete pchannel;
return(1);

}

MQCE Programming Guide Page 14

4 Java Language

For Java Language, the programmer has 2 different methods to set the MQCE Send/Receive Exit
values.

1. If the programmer's application uses the IBM MQ base Java, the MQCEJ class must be
used

2. If the programmer's application uses the IBM MQ base JMS, the MQCEJ class must use
a QCF (Queue Connection Factory) that contains MQCEJ defined for SENDEXIT and
RECEXIT properties.

MQCE Programming Guide Page 15

4.1 IBM MQ base Java

This section describes how to instantiate MQCEJ base Java. There are three ways to instantiate
the MQCE]J base Java client-side channel exit.

411 Syntax

new MQCEJ();
new MQCEJ(filename);
new MQCEJ(inlineKeywords);

4.1.2 Parameters

The MQCE] base Java instantiation can include the following parameters as described below:
none or filename or inline-keywords.

4.1.2.1 Filename (String) — input

The filename represents the name of the property file (IniFile) that contains the IniFile keyword
values.

4.1.2.2 inlineKeywords (String) - input

A string with the IniFile keywords separated by a semi-colon. i.e. K=256

4.1.3 Exceptions
The following exceptions may be encountered:

» JllegalArgumentException
Invalid / illegal value supplied as an argument to the call.

» FileNotFoundException
The specified property file (IniFile) could not be found at the location given.

MQCE Programming Guide Page 16

4.1.4 Language Invocations
The MQCEJ base Java only supports the Java programming language.

4.1.41 Java Language

Sample #1 does not pass an IniFile or Userld & Password to the MQCEJ client-side
channel exit; hence the exit will display a log on pop-up to the end-user.

String gManager;

MQEnvironment.hostname = "10.10.10.10(1414)";
MQEnvironment.channel = "TEST.CHL";
MQEnvironment.sendExit = new MQCEJ() ;
MQEnvironment.receiveExit = new MQCEJ() ;

MQQueueManager _gMgr = new MQQueueManager (qManager) ;

Sample #2 passes an IniFile to the MQCEJ class. The IniFile contains the Userld and
Password that will be used by the MQCEJ client-side channel exit.

String gManager;

MQEnvironment.hostname = "10.10.10.10(1414)";

MQOEnvironment.channel = "TEST.CHL";

MQEnvironment. sendExit=new MQCEJ ("C:\\Capitalware\\MQCE\\mgce.ini") ;
MQEnvironment.receiveExit=new MQCEJ ("C:\\Capitalware\\MQCE\\mgce.ini") ;

MQQueueManager _gMgr = new MQQueueManager (qManager) ;

Sample #3 passes the Userld and Password directly to the MQCEJ client-side channel
exit.

String gManager;

String userID;

String password;

MQEnvironment.hostname = "10.10.10.10(1414)";
MQOEnvironment.channel = "TEST.CHL";
MQEnvironment.sendExit = new MQCEJ ("K=256") ;
MQEnvironment.receiveExit = new MQCEJ ("K=256") ;

MQQueueManager _gMgr = new MQQueueManager (qManager) ;

MQCE Programming Guide Page 17

4.2 IBM MQ base JMS

This section describes how to use the setSendExit, setReceiveExit, setSendExitInit and
setReceiveExitInit methods of the MQQueueConnectionFactory class to set the MQCE
Send/Receive Exit values. The setSendExitInit and setReceiveExitInit methods accepts input
parameters in 3 different forms: none, filename or inline-keywords.

4.21 Syntax

MQQueueConnectionFactory mqQCF = new MQQueueConnectionFactory();

mqQCF.setSendExit("biz.capitalware.mqce.MQCEJ");
mqQCF.setSendExitlnit(parms);

mqQCF.setReceiveExit("biz.capitalware.mqce.MQCEJ");
mqQCF.setReceiveExitlnit(parms);

4.2.2 Parameters

The setSendExitInit and setReceiveExitInit methods of the MQQueueConnectionFactory class
can include the following parameters as described below: none, filename or inline-keywords.

4.2.2.1 Filename (String) — input

The filename represents the name of the property file (IniFile) that contains the IniFile keyword
values.

4.2.2.2 inlineKeywords (String) - input

A string with the IniFile keywords separated by a semi-colon. i.e. K=256

4.2.3 Exceptions
The following exceptions may be encountered:

» JllegalArgumentException
Invalid / illegal value supplied as an argument to the call.

» FileNotFoundException
The specified property file (IniFile) could not be found at the location given.

MQCE Programming Guide Page 18

4.2.4 Language Invocations
The MQCE]J for JMS only supports the Java/JMS programming language.

4.2.41 JavalJMS Language

Sample #1 uses a QCF via an MQJNDI entry. The QCF entry includes the definition for
the MQCEJ send and receive exits.

QueueConnectionFactory qcf;

QueueConnection connection;

Hashtable env = new Hashtable()

env.put (Context.INITIAL CONTEXT FACTORY, JNDI CONTEXT) ;
env.put (Context.PROVIDER URL, "file:/C:\JNDI\test\mgjndi");

Context ctx = new InitialContext (env)
gcf = (QueueConnectionFactory) ctx.lookup (myQCF) ;
connection = gqcf.createQueueConnection() ;

Sample #2 uses a dynamically created QCF. The programmer must explicitly set the
MQCEJ send and receive exits via the setSendExit and setReceiveExit methods of the
QCF.

MQQueueConnectionFactory mgQCF;
QueueConnection connection;
String gManager;

mgQCF = new MQQueueConnectionFactory() ;

mgQCF . setQueueManager (gManager) ;

mgQCF.setHostName ("10.10.10.10(1414)") ;

mgQCF . setChannel ("TEST.CHL") ;

mgQCF . setTransportType (JMSC.MQJMS TP CLIENT MQ TCPIP) ;
mgQCF.setSendExit ("biz.capitalware.mgce.MQCEJ") ;
mgQCF.setSendExitInit ("K=256") ;

mgQCF . setReceiveExit ("biz.capitalware.mgce.MQCEJ") ;
mgQCF . setReceiveExitInit ("K=256") ;

connection = mgQCF.createQueueConnection() ;

MQCE Programming Guide Page 19

5 .NET C-Sharp Language

For the NET C-Sharp Language, the programmer has 2 different methods to set the MQCE
Send/Receive Exit values. One method uses the new MQCEDN .NET class under a
managed .NET environment and the other method uses the native mqce.dll under an
unmanaged .NET environment.

1. If the programmer's application uses a managed .NET environment, the MQCEDN class
must be used

2. [If the programmer's application uses an unmanaged .NET environment, the native
mgqce.dll must be used

MQCE Programming Guide Page 20

5.1 Managed .NET Environment
This section describes how to instantiate MQCEDN class.

5.1.1 Syntax

MQEnvironment.SendExit="C:\\Capitalware\MQCE\\mqcedn.dll(Capitalware. MQCEDN)";
MQEnvironment.ReceiveExit="C:\\Capitalware\MQCE\\mqcedn.dll(Capitalware. MQCEDN)";

5.1.2 Parameters
There are no parameters for the MQCEDN class.

5.1.3 Exceptions
There are no MQCEDN exceptions.

MQCE Programming Guide Page 21

5.1.4 Language Invocations
The MQCEDN class supports any managed .NET language (e.g. C-Sharp .NET and VB.NET).

5.1.4.1 C-Sharp Language

String gManager;
MQEnvironment.Hostname = "10.10.10.10(1414)";

MQEnvironment.Channel = "TEST.CHL";
MQEnvironment.SendExit="C:\\Capitalware\\MQCE\\mgcedn.dll (Capitalware.MQCEDN) " ;
MQEnvironment.ReceiveExit="C:\\Capitalware\\MQCE\\mgcedn.dll (Capitalware.MQCEDN)";

MQQueueManager gMgr = new MQQueueManager (gManager) ;

MQCE Programming Guide Page 22

6 Appendix A — Sample Client Channel Table

The following are sample Client Channel Table entries that can be used with the sample code for
MQCONN (ImgQueueManager), CWMQCONN or MQQueueManager (see Appendix C for
sample code).

6.1 Windows

DEFINE CHANNEL ('TEST.CHL') CHLTYPE (CLNTCONN) +
TRPTYPE (TCP) CONNAME ('10.10.10.10(1414)"') OMNAME ('MQAl1l') +
SENDDATA (' ') SENDEXIT('C:\Capitalware\MQCE\mgce (CE)"') +
RCVDATA (' ') RCVEXIT ('C:\Capitalware\MQCE\mgce (CE) ")

6.2 Unix and Linux for IBM MQ 32-bit

DEFINE CHANNEL ('TEST.CHL') CHLTYPE (CLNTCONN) +
TRPTYPE (TCP) CONNAME ('10.10.10.10(1414)"'") OMNAME ('MQAl1l') +
SENDDATA (' ') SENDEXIT('/var/mgm/exits/mgce (CE)"') +
RCVDATA (' ') RCVEXIT('/var/mgm/exits/mgce (CE)")

6.3 Unix and Linux for IBM MQ 64-bit

DEFINE CHANNEL ('TEST.CHL') CHLTYPE (CLNTCONN) +
TRPTYPE (TCP) CONNAME ('10.10.10.10(1414) ") QMNAME ('MQA1l'") +
SENDDATA (' ') SENDEXIT ('/var/mgm/exits64/mgce (CE)"') +
RCVDATA (' ') RCVEXIT('/var/mgm/exits/mgce (CE)"')

6.4 Java Applications

DEFINE CHANNEL ('TEST.CHL') CHLTYPE (CLNTCONN) +
TRPTYPE (TCP) CONNAME ('10.10.10.10(1414)"') OQMNAME ('MQA1') +
SENDDATA (' ') SENDEXIT ('biz.capitalware.mgce.MQCEJ') +
RCVDATA (' ') RCVEXIT('biz.capitalware.mgce.MQCEJ")

MQCE Programming Guide Page 23

7 Appendix B — Sample MQJNDI

The following are sample MQJNDI entries that can be used by the Java/JMS code samples (see
Appendix C for sample code):

7.1 JMS Queue Connection Factory (QCF) Sample:

DEFINE QCF (myQCF) OQOMANAGER (MQAl) CHANNEL (TEST.CHL)
HOSTNAME (10.10.10.10) PORT (1414)
SENDEXIT (biz.capitalware.mgce.MQCEJ)
SENDEXITINIT('")
RECEXIT (biz.capitalware.mgce.MQCEJ)
RECEXITINIT('")
FAILIFQUIESCE (YES) TRANSPORT (CLIENT)

7.2 JMS Queue Sample:

DEFINE Q(mgs.test.q) QUEUE (TEST.Ql) OMANAGER (MQAI)
TARGCLIENT (JMS) FAILIFQUIESCE (YES)

MQCE Programming Guide Page 24

8 Appendix C — MQCE Language Files

The following is the directory structure layout followed by the Language files:

Windows Directory Structure

Unix Directory Structure

C:
+--Capitalware
+--MQCE <- Install Directory
+--samples
+--C
+--Cpp
+--CS
+--java
+--vb

<Install_Directory>
+--Capitalware

+--MQCE
+--samples
+--C
+--Cpp
+--java

MQCE Programming Guide

Page 25

8.1 MQCE C Sample Files
The MQCE C sample files are installed in the following directories:

Platform Directory
Linux / Unix <Install Directory>/samples/c/
Windows C:\Capitalware\MQCE\samples'\c\

8.1.1 List of C sample files

Filename Description

MQCETest01.c | Demonstrates how to use the MQCONN and CCDT to connect to a queue
manager then how to open a queue, put a message to a queue, close the
queue and disconnect from a queue manager.

MQCETest02.c | Demonstrates how to use the C MQCONN and CCDT to connect to a queue
manager then how to open a queue, get a message from a queue, close the
queue and disconnect from a queue manager.

MQCETestl1.c | Demonstrates how to use the MQCONNX API with the MQCE
send/receive exit to connect to a queue manager then how to open a queue,
put a message to a queue, close the queue and disconnect from a queue
manager.

MQCETestl2.c | Demonstrates how to use the MQCONNX API with the MQCE
send/receive exit to connect to a queue manager then how to open a queue,
get a message from a queue, close the queue and disconnect from a queue
manager.

MQCE Programming Guide Page 26

8.2 MQCE C++ Sample Files
The MQCE C sample files are installed in the following directories:

Platform Directory
Linux / Unix <Install Directory>/samples/cpp/
Windows C:\Capitalware\MQCE\samples\cpp\

8.2.1 List of C++ sample files

Filename

Description

MQCETest01.cpp

Demonstrates how to use the ImqQueueManager class with CCDT to
connect to a queue manager then how to open a queue, put a message to a
queue, close the queue and disconnect from a queue manager.

MQCETest02.cpp

Demonstrates how to use the ImqQueueManager class with CCDT to
connect to a queue manager then how to open a queue, get a message
from a queue, close the queue and disconnect from a queue manager.

MQCETestl 1.cpp

Demonstrates how to use the ImqQueueManager and ImqChannel classes
with the MQCE send/receive exit to connect to a queue manager then
how to open a queue, put a message to a queue, close the queue and
disconnect from a queue manager.

MQCETest12.cpp

Demonstrates how to use the ImqQueueManager and ImqChannel classes
with the MQCE send/receive exit to connect to a queue manager then
how to open a queue, get a message from a queue, close the queue and
disconnect from a queue manager.

MQCE Programming Guide Page 27

8.3 MQCE base Java & JMS Sample Files
The MQCE base Java and JMS sample files are installed in the following directories:

Platform Directory
Linux / Unix <Install Directory>/samples/java/
Windows C:\Capitalware\MQCE\samples\java\

8.3.1 List of Java sample files

Filename

Description

MQCETest01 .java

Demonstrates how to use the MQQueueManager, MQEnvironment and
MQCE] class to connect to a queue manager then how to open a queue,
put a message to a queue, close the queue and disconnect from a queue
manager.

MQCETest02.java

Demonstrates how to use the MQQueueManager, MQEnvironment and
MQCE]J class to connect to a queue manager then how to open a queue,
get a message from a queue, close the queue and disconnect from a
queue manager.

MQCETestl 1.java

Demonstrates how to use the MQQueueManager, HashTable and
MQCE]J class to connect to a queue manager then how to open a queue,
put a message to a queue, close the queue and disconnect from a queue
manager.

MQCETest12.java

Demonstrates how to use the MQQueueManager, HashTable and
MQCE]J class to connect to a queue manager then how to open a queue,
get a message from a queue, close the queue and disconnect from a
queue manager.

MQCETest41 .java

Demonstrates how to use the MQQueueManager class with a Client
Channel Definition Table to connect to a queue manager then how to
open a queue, put a message to a queue, close the queue and disconnect
from a queue manager.

MQCETest42.java

Demonstrates how to use the MQQueueManager class with a Client
Channel Definition Table to connect to a queue manager then how to
open a queue, gef a message from a queue, close the queue and
disconnect from a queue manager.

8.3.2 List of Java/lJMS sample files

Filename

Description

MQCETestIMSO01.java | Demonstrates how to use the QueueConnectionFactory (QCF) via

MQJINDI and MQCEJ class to connect to a queue manager then how
to open a queue, put a message to a queue, close the queue and
disconnect from a queue manager.

MQCETestIMS02.java | Demonstrates how to use the QueueConnectionFactory (QCF) via

MQINDI and MQCE]J class to connect to a queue manager then how
to open a queue, get a message from a queue, close the queue and
disconnect from a queue manager.

MQCE Programming Guide Page 28

Filename Description

MQCETestIMS11.java | Demonstrates how to use the QueueConnectionFactory (QCF) and
MQCE]J class to connect to a queue manager then how to open a
queue, put a message to a queue, close the queue and disconnect
from a queue manager.

MQCETestIMS12.java | Demonstrates how to use the QueueConnectionFactory (QCF) and
MQCE]J class to connect to a queue manager then how to open a
queue, get a message from a queue, close the queue and disconnect
from a queue manager.

MQCE Programming Guide Page 29

8.4 .NET C-Sharp Sample Files
The MQCE .NET C-Sharp sample files are installed in the following directories:

Platform Directory
Windows C:\Capitalware\MQCE\samples\cs\

8.4.1 List of .NET C-Sharp sample files

Filename Description

MQCETest01.cs | Demonstrates how to use the MQQueueManager, MQEnvironment and
MQCEDN class to connect to a queue manager then how to open a queue,
put a message to a queue, close the queue and disconnect from a queue
manager.

MQCETest02.cs | Demonstrates how to use the MQQueueManager, MQEnvironment and
MQCEDN class to connect to a queue manager then how to open a queue,
get a message from a queue, close the queue and disconnect from a queue
manager.

MQCETestl1.cs | Demonstrates how to use the MQQueueManager, MQEnvironment and
MQCEDN class to connect to a queue manager then how to open a queue,
put a message to a queue, close the queue and disconnect from a queue
manager.

MQCETest12.cs | Demonstrates how to use the MQQueueManager, MQEnvironment and
MQCEDN class to connect to a queue manager then how to open a queue,
get a message from a queue, close the queue and disconnect from a queue
manager.

MQCETest41.cs | Demonstrates how to use the MQQueueManager class (unmanaged .NET)
with a Client Channel Table to connect to a queue manager then how to
open a queue, put a message to a queue, close the queue and disconnect
from a queue manager.

MQCETest42.cs | Demonstrates how to use the MQQueueManager class (unmanaged .NET)
with a Client Channel Table to connect to a queue manager then how to
open a queue, gef a message from a queue, close the queue and disconnect
from a queue manager.

MQCE Programming Guide Page 30

8.5 MQCE Visual Basic Sample Files
The MQCE Visual Basic sample files are installed in the following directories:

Platform Directory
Windows C:\Capitalware\MQCE\samples\vb\

8.5.1 List of Visual Basic sample files

Filename Description

MQCETest01.frm | Demonstrates how to use the MQCONN and CCDT to connect to a
queue manager then how to open a queue, put a message to a queue,
close the queue and disconnect from a queue manager.
MQCETest02.frm | Demonstrates how to use the MQCONN and CCDT to connect to a
queue manager then how to open a queue, get a message from a queue,
close the queue and disconnect from a queue manager.
MQCETestl1.frm | Demonstrates how to use the MQCONNX API with the MQCE client-
side channel exit to connect to a queue manager then how to open a
queue, put a message to a queue, close the queue and disconnect from a
queue manager.

MQCETest12.frm | Demonstrates how to use the MQCONNX API with the MQCE client-
side channel exit to connect to a queue manager then how to open a
queue, get a message from a queue, close the queue and disconnect from
a queue manager.

MQCE Programming Guide Page 31

9 Appendix D — License Agreement

This is a legal agreement between you (either an individual or an entity) and Capitalware Inc. By
opening the sealed software packages (if appropriate) and/or by using the SOFTWARE, you
agree to be bound by the terms of this Agreement. If you do not agree to the terms of this
Agreement, promptly return the disk package and accompanying items for a full refund.
SOFTWARE LICENSE

1. GRANT OF LICENSE. This License Agreement (License) permits you to use one copy of the
software product identified above, which may include user documentation provided in on-line or
electronic form (SOFTWARE). The SOFTWARE is licensed as a single product, to an
individual user, or group of users for Muliple User Licenses and Site Licenses. This Agreement
requires that each user of the SOFTWARE be Licensed, either individually, or as part of a group.
A Multi-User License provides for a specified number of users to use this SOFTWARE at any
time. This does not provide for concurrent user Licensing. Each user of this SOFTWARE must
be covered either individually, or as part of a group Multi-User License. The SOFTWARE is in
use on a computer when it is loaded into the temporary memory (i.e. RAM) or installed into the
permanent memory (e.g. hard disk) of that computer. This software may be installed on a
network provided that appropriate restrictions are in place limiting the use to registered users
only.

2. COPYRIGHT. The SOFTWARE is owned by Capitalware Inc. and is protected by United
States Of America and Canada copyright laws and international treaty provisions. You may not
copy the printed materials accompanying the SOFTWARE (if any), nor print copies of any user
documentation provided in on-line or electronic form. You must not redistribute the registration
codes provided, either on paper, electronically, or as stored in the files MQCE.ini or any other
form.

3. OTHER RESTRICTIONS. The registration notification provided, showing your authorization
code and this License is your proof of license to exercise the rights granted herein and must be
retained by you. You may not rent or lease the SOFTWARE, but you may transfer your rights
under this License on a permanent basis, provided you transfer this License, the SOFTWARE
and all accompanying printed materials, retain no copies, and the recipient agrees to the terms of
this License. You may not reverse engineer, decompile, or disassemble the SOFTWARE, except
to the extent the foregoing restriction is expressly prohibited by applicable law.

LIMITED WARRANTY

LIMITED WARRANTY. Capitalware Inc. warrants that the SOFTWARE will perform
substantially in accordance with the accompanying printed material (if any) and on-line
documentation for a period of 365 days from the date of receipt.

CUSTOMER REMEDIES. Capitalware Inc. entire liability and your exclusive remedy shall be,
at Capitalware Inc. option, either (a) return of the price paid or (b) repair or replacement of the
SOFTWARE that does not meet this Limited Warranty and that is returned to Capitalware Inc.
with a copy of your receipt. This Limited Warranty is void if failure of the SOFTWARE has
resulted from accident, abuse, or misapplication. Any replacement SOFTWARE will be

MQCE Programming Guide Page 32

warranted for the remainder of the original warranty period or thirty (30) days, whichever is
longer.

NO OTHER WARRANTIES. To the maximum extent permitted by applicable law, Capitalware
Inc. disclaims all other warranties, either express or implied, including but not limited to implied
warranties of merchantability and fitness for a particular purpose, with respect to the
SOFTWARE and any accompanying written materials.

NO LIABILITY FOR CONSEQUENTIAL DAMAGES. To the maximum extent permitted by
applicable law, in no event shall Capitalware Inc. be liable for any damages whatsoever
(including, without limitation, damages for loss of business profits, business interruption, loss of
business information, or other pecuniary loss) arising out of the use or inability to use the
SOFTWARE, even if Capitalware Inc. has been advised of the possibility of such damages.

MQCE Programming Guide Page 33

10 Appendix E — Notices

Trademarks:

AIX, IBM, MQSeries, OS/2 Warp, OS/400, iSeries, MVS, OS/390, WebSphere, IBM MQ and z/
OS are trademarks of International Business Machines Corporation.

HP-UX is a trademark of Hewlett-Packard Company.

Intel is a registered trademark of Intel Corporation.

Java, J2SE, J2EE, Sun and Solaris are trademarks of Sun Microsystems Inc.
Linux is a trademark of Linus Torvalds.

Mac OS X is a trademark of Apple Computer Inc.

Microsoft, Visual Basic, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation.

UNIX is a registered trademark of the Open Group.

WebLogic is a trademark of BEA Systems Inc.

MQCE Programming Guide Page 34

	1 Introduction
	1.1 Overview
	1.2 Executive Summary
	1.3 Message Diagram (Logical View)
	1.4 Context Diagram (Logical View)

	2 C Language
	2.1 MQCONN
	2.1.1 Syntax
	2.1.2 Parameters
	QMName (char 48) - input
	HConn (MQHCONN) - output
	CompCode (MQLONG) - output
	Reason (MQLONG) - output

	2.1.3 Language Invocations
	2.1.3.1 C Language
	2.1.3.2 Visual Basic Language

	2.2 MQCONNX
	2.2.1 Syntax
	2.2.2 Parameters
	QMName (char 48) - input
	ConnectOptions (MQHCONN) – input / output
	HConn (MQHCONN) - output
	CompCode (MQLONG) - output
	Reason (MQLONG) - output

	2.2.3 Language Invocations
	2.2.3.1 C Language
	2.2.3.2 Visual Basic Language

	3 C++ Language
	3.1 ImqQueueManager (MQCONN)
	3.1.1 Syntax
	3.1.2 Parameters
	QMName (char 48) - input

	3.1.3 Language Invocations
	3.1.3.1 C++ Language

	3.2 ImqQueueManager and ImqChannel (MQCONNX)
	3.2.1 Syntax
	3.2.2 Parameters
	QMName (char 48) - input
	ChannelName (char 20) – input
	ConnName (char 264) - input
	ExitName (char 128) – input

	3.2.3 Language Invocations
	3.2.3.1 C++ Language

	4 Java Language
	4.1 IBM MQ base Java
	4.1.1 Syntax
	4.1.2 Parameters
	4.1.2.1 Filename (String) – input
	4.1.2.2 inlineKeywords (String) - input

	4.1.3 Exceptions
	4.1.4 Language Invocations
	4.1.4.1 Java Language

	4.2 IBM MQ base JMS
	4.2.1 Syntax
	4.2.2 Parameters
	4.2.2.1 Filename (String) – input
	4.2.2.2 inlineKeywords (String) - input

	4.2.3 Exceptions
	4.2.4 Language Invocations
	4.2.4.1 Java/JMS Language

	5 .NET C-Sharp Language
	5.1 Managed .NET Environment
	5.1.1 Syntax
	5.1.2 Parameters
	5.1.3 Exceptions
	5.1.4 Language Invocations
	5.1.4.1 C-Sharp Language

	6 Appendix A – Sample Client Channel Table
	6.1 Windows
	6.2 Unix and Linux for IBM MQ 32-bit
	6.3 Unix and Linux for IBM MQ 64-bit
	6.4 Java Applications

	7 Appendix B – Sample MQJNDI
	7.1 JMS Queue Connection Factory (QCF) Sample:
	7.2 JMS Queue Sample:

	8 Appendix C – MQCE Language Files
	8.1 MQCE C Sample Files
	8.1.1 List of C sample files

	8.2 MQCE C++ Sample Files
	8.2.1 List of C++ sample files

	8.3 MQCE base Java & JMS Sample Files
	8.3.1 List of Java sample files
	8.3.2 List of Java/JMS sample files

	8.4 .NET C-Sharp Sample Files
	8.4.1 List of .NET C-Sharp sample files

	8.5 MQCE Visual Basic Sample Files
	8.5.1 List of Visual Basic sample files

	9 Appendix D – License Agreement
	10 Appendix E – Notices

