

MD01: MQSeries - Standards and conventions
Version 1.0

Document Number MD01 SCRIPT

Unclassified

 Unclassified

 Take Note!

Before using this Manual and the product it supports, be sure to read the general information under "Notices".

First Edition, August 1998

This edition applies to Version 1.0 of MD01: MQSeries - Standards and conventions, and to all subsequent releases
and modifications until otherwise indicated in new editions.

A form for reader's comments is provided at the back of this publication. If the form has been removed, address
your comments to:

IBM United Kingdom Laboratories
Transaction Systems Technical Sales Support (MP102)
Hursley Park
Hursley
Hampshire, SO21 2JN, England

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you. You may continue to use the information that
you supply.

 Copyright International Business Machines Corporation 1998. All rights reserved.
Note to U.S. Government Users - Documentation related to restricted rights - Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corporation.

 Unclassified

 Contents

Chapter 1. General Items 1
Administration 1
Object Names 1
Defaults 2

Chapter 2. MQ Network Structure 4
Queue Managers 4

Default Queue Manager 5
Storage Class 6

Dead Letter Queue 6
Channels 7

Transmission Queue 7
Message Channels 8
Client Connections 8
MQSeries for Windows V2 9

Chapter 3. Applications 10
Queues 10

Names 10
Versions 11
Reply Queue 11
Dynamic Queues 13
Queues for Bridges and Links 13
Namelists 13

Triggering 13
Programs 13
Process 14
Initiation Queue 14
Trigger Control 15

Programming Conventions 15

 Contents iii

 Unclassified

 Notices.

The following paragraph does not apply in any country where such provisions are inconsistent with local law.

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE.
Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore this statement
may not apply to you.

References in this publication to IBM products, programs, or services do not imply that IBM intends to make these
available in all countries in which IBM operates.

Any reference to an IBM licensed program or other IBM product in this publication is not intended to state or
imply that only IBM's program or other product may be used. Any functionally equivalent program that does not
infringe any of the intellectual property rights may be used instead of the IBM product. Evaluation and verification
of operation in conjunction with other products, except those expressly designated by IBM, is the user's
responsibility.

IBM may have patents or pending patent applications covering subject matter in this document. The furnishing of
this document does not give you any license to these patents. You can send license inquiries, in writing, to the
IBM Director of Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, New York 10594, USA.

The information contained in this document has not be submitted to any formal IBM test and is distributed AS IS.
The use of the information or the implementation of any of these techniques is a customer responsibility and
depends on the customer's ability to evaluate and integrate them into the customer's operational environment. While
each item has been reviewed by IBM for accuracy in a specific situation, there is no guarantee that the same or
similar results will be obtained elsewhere. Customers attempting to adapt these techniques to their own
environments do so at their own risk.

The following terms are trademarks of the International Business Machines Corporation in the United States and/or
other countries:

IBM is a registered trademark of International Business Machines Corporation.

Trademarks of International Business Machines Corporation

PC Direct is a trademark of Ziff Communications Company and is used by IBM Corporation under license.

UNIX is a registered trademark in the United States and other countries licensed exclusively through X/Open
Company Limited.

C-bus is a trademark of Corollary, Inc.

Microsoft, Windows, and the Windows 95 Logo are trademarks of Microsoft Corporation.

AIX CICS CICS/ESA
IMS MQ MQIntegrator
MQSeries MVS MVS/ESA
OS/2 OS/400 RACF

iv MQSeries - Standards and conventions

 Unclassified

Lotus and Lotus Notes are registered trademarks, and Notes and LotusScript are trademarks of Lotus Development
Corporation.

SAP and SAP R/3 are trademarks of SAP AG.

Other company, product, and service names, which may be denoted by a double asterisk (**), may be trademarks or
service marks of others.

 Notices. v

 Unclassified

 Preface

A key element of success in using MQSeries is to plan ahead; and one important aspect of this consists of adopting
a set of workable standards and conventions. It is a frequent question from those aspiring to get the best from
MQSeries, and the aim of this document is to address that question.

There have been various suggestions for MQ standards since the product was first introduced. None has been
comprehensive; some have offered contradictory advice; some advice would undo designed features of MQSeries if
followed.

Of course, almost any standard is better than none, so all these proposals have had some support. This document
aims to recommend some standards and hints, encompassing all aspects of MQSeries, and allowing MQSeries to be
exploited the way it was designed.

Users are at liberty to use whatever from these standards they think is appropriate for them. You would in any case
want to augment these suggestions with house standards as needed.

The emphasis is on production use of MQSeries. Some educational or test environments may be less rigorous in
adhering to these standards, but they can use it as a base.

How this Document is Organised

The document is organised as follows:

Chapter 1, General Items
Provides a general introduction to these standards. There are some basic recommendations
that would apply throughout MQSeries included here. It covers defaults as well as general
naming standards.

Chapter 2, MQ Network Structure
The approach taken in this document is to discuss this topic separately from applications.
When MQSeries is deployed on a small scale, the boundaries get blurred, and it is difficult
to see them separately.

As the use of MQSeries grows, it can be useful to have considered this part of the
configuration separately, the collection of queue managers and the connections between
them. These components need have no specific knowledge of the applications they support.
They are able to support multiple applications, or to run new applications without change.

Chapter 3, Applications
The general goal behind these recommendations is to make applications transparent to
where they fit in the MQ network structure. They do depend on that structure for message
delivery, but the application specific configuration should not have to depend on how that
is done.

There is one aspect of MQSeries omitted from the first edition of this standard - the new area concerning MQSeries
Business Integration.

vi MQSeries - Standards and conventions

 Unclassified

 Bibliography

¹ Information about MQSeries on the Internet

The MQSeries home page

The URL of the MQSeries product family home page is:

 http://www.software.ibm.com/ts/mqseries/

 ¹ Evaluating products

GC33-0805MQSeries: An Introduction to Messaging and Queuing

 ¹ Planning

GC33-1349MQSeries Planning Guide

 ¹ Special topics

SC33-1872 MQSeries Intercommunication

 ¹ Administration

GC33-1632 MQSeries Clients

SC33-1369MQSeries Command Reference

 ¹ Application programming

SC33-0807MQSeries Application Programming Guide

SC33-1673MQSeries Application Programming Reference

SX33-6095MQSeries Application Programming Reference Summary

 Bibliography vii

 Unclassified

viii MQSeries - Standards and conventions

 Unclassified

 Chapter 1. General Items

This document is intended for use by Management, Systems Administrators, Application Developers, Standards
Committees, and any others that will support MQSeries networks or design MQSeries applications. It is designed
to provide a common base from which all MQSeries personnel can work.

Its intended benefits are as follows:

¹ Consistency in applications and administration processes

¹ Maximum availability of applications

¹ Avoiding common mistakes made by beginners

¹ Assistance to those in the early stages of becoming MQSeries experts

¹ General assurance of a smooth start for successful MQSeries projects

Acceptance and implementation of these standards is at your discretion. The recommendations that follow have
been built up to incorporate wide experience with MQSeries. You may in any case want to augment these
suggestions by adding house standards as needed.

The emphasis is on production use of MQSeries. Some educational or test environments may be less rigorous in
adhering to these standards, but they can use it as a base.

 Administration
Identify the "MQA"

Successful users have identified an MQSeries Administrator, to keep control of the running
systems, including the use of any standards. (Some have coined the term "MQA", inspired by
the similar role of a "DBA".)

¹ You can have a single MQA; or there can be benefit in a small team, dividing the
responsibilities for mainframe and distributed for example. As long as they work well
together that can be successful.

¹ The MQAs need to have had appropriate MQSeries training; ideally the MQA should be an
IBM Certified Specialist in MQSeries.

Information about MQSeries education and the Certification program can be found on the
MQSeries web site.

¹ The MQA, or this small team, will also need to work in conjunction with security and
network administrators.

The main thing is that the role is identified.Do it sooner rather than later.

 Object Names

All MQSeries names follow the convention for MQSeries, rather than the standard for object names on each
supported platform. Object names may need to be used across platforms for example.

 Chapter 1. General Items 1

 Unclassified

Don't use lower case letters
MQSeries allows both upper and lower case letters in its names.

Remember, however, that MQSeries names are case-sensitive. This is apt to be a common
source of error. This is compounded because some tools fold strings to upper case.

Don't use % in names
This character is valid in all MQSeries names, although it is not commonly used in other names
across platforms. (The property that determined which characters were permitted is that no
conversion is required between ASCII, or between EBCDIC, code pages.)

Choose meaningful names, within the constraints of the standards
This should be fairly obvious; help the MQA.

There is no implied structure, or hierarchy, in the name, such as you might find on many
systems' file names. MQ just compares the strings.

These standards do recommend using hierarchical names in places; that is because they can be
more useful that way. In some cases there is a recommendation for a suffix where there are
multiple "versions" of an object.

Document the names
Remember users may be in different departments; using different platforms.

Always include a Description
All objects have a DESCR attribute for this purpose. MQSeries takes no action on the value,
but allows it to be viewed.

¹ The character set in the Description is not limited to those used to construct MQSeries
object names. Its purpose is to help the MQA. This may in fact be more readable in mixed
case, and it can include national language, including DBCS, characters where appropriate.

Save the definitions
There are various reasons for doing this.

¹ In the case of a failure you may need to re-create the objects. This requires you save the
definitions separate from the queue manager.

¹ Even without a failure, it can be useful to reset the attributes to a known state. For example
if triggering has been turned off, or GET or PUT disabled, it is helpful to be able to restore
the objects to their initial state.

¹ It can supplement the documentation

For example MQSC scripts, or CL programs on OS/400, would do; remember to include the
REPLACE option.

 Defaults
Ideally leave defaults unchanged

MQSeries generally keeps attribute defaults in standard objects, 'SYSTEM.DEFAULT.*'. When
an object is defined, MQ takes any unspecified attributes from the corresponding default object.

The original intent of this approach was to support users who wanted to have different defaults.
The various platforms supply these defaults in different ways.

¹ MQSeries for MVS/ESA provides a script which can serve as the "Initialization Input Data
Set" in the queue manager JCL.

¹ MQSeries for OS/400 provides a CL program, AMQSDEF4; the source is in QMQMSAMP.

2 MQSeries - Standards and conventions

 Unclassified

¹ Other systems have a supplied an MQSC script (AMQSCOMA), intended to be run once
after the queue manager is created. Version 5 implementations do not supply this set of
commands though; the standard default objects are created automatically when a queue
manager is created.

Accept the MQSeries defaults, unless there is a good reason to change them - much care went
into deciding what they should be.

If you must change defaults, use a Customization file
Don't change the supplied script, even though this was the original intended purpose - you
would lose changes if there is a subsequent product update.

In fact there are more compelling reasons. Most queue managers require all attributes to be
specified when DEFAULT objects are created. A modified script would fail if a later product
release introduced new attributes. Even more compelling is that the Version 5 products don not
even include a command file that can be edited.

A better approach is to have a separate Customization file; use ALTER commands to change
just the attributes where the defaults are to be different.

¹ Concatenate with the Initialization Input Dataset on MVS

¹ Elsewhere, run the changes after the standard system defaults have been created.

Use the Customization file for Queue Manager attributes
Some characteristics are configured when a queue manager is created, and can not be changed
after that. The following advice clearly does not apply to those attributes that can not change.

Specifying other queue manager attributes in a Customization file, in addition to being simpler,
provides a direct way for all the values to be returned to a known state.

¹ Example 1, on an MVS queue manager:.

 ALTER QMGR +

DESCR('Queue manager = MARS') +

 DEADQ('SYSTEM.DEAD.LETTER.QUEUE')

¹ Example 2, on one of several AIX systems connected to that MVS queue manager:

 ALTER QMGR +

DESCR('Queue manager = JUPITER4') +

 DEADQ('SYSTEM.DEAD.LETTER.QUEUE') +

 DEFXMITQ('MARS')

Use templates for default classes
Remember that an alternative to system defaults is to use DEFINE LIKE; objects are defined
with reference to a known Defaults object, a template object. Identify these clearly by using
"TEMPLATE" as part of the name.

 Chapter 1. General Items 3

 Unclassified

Chapter 2. MQ Network Structure

The approach taken in this document is to discuss this topic separately from applications. When MQSeries is
deployed on a small scale, the boundaries get blurred, and it is difficult to see them separately.

As the use of MQSeries grows, it can be useful to have considered this part of the configuration separately, the
collection of queue managers and the connections between them. These components need have no specific
knowledge of the applications they support. They are able to support multiple applications, or to run new
applications without change.

 Queue Managers
Assign unique names to production queue managers

This sounds obvious, but is often ignored - and it is a cause of problems.

A queue manager can be understood as a "container" for queues and related objects. There is
typically one per system, but you can usually define additional queue managers.

¹ On a large system particularly, it may be useful to keep a test environment separate, on the
same system.

¹ On systems that support fail over, a queue manager may be recovered on a processor that
normally has its own queue manager.

¹ Where applications are constrained, for example by MQ log writes, multiple queue
managers can be a way to increase capacity.

Queue Managers with the same name can be configured to exchange messages - by using Queue
Manager aliases.But this is strongly discouraged. There are some examples where this can
lead to ambiguity, and thus messages being sent to the wrong queue manager.

¹ If ReplyToQMgr is left blank in the Message Descriptor, MQSeries inserts the actual local
Queue Manager name, not its alias.

¹ Dead Letter Queue messages identify the real Queue Manager, not any alias.

Don't just copy documentation examples
This is a sure way to produce queue managers with duplicate names; like CSQ1, neptune, etc.
Instead, plan ahead the names of production queue managers.

Keep the queue manager name short
On MVS it has to be - the queue manager name corresponds to the MVS subsystem name.
Hence the queue manager name is restricted to 4 characters. (It must be distinct from other
subsystem names on the same MVS, and some users have taken to calling their queue managers
"MQ..".) An alternative would be a convention such as the following.

 ¹ Example: ADDX

A = geographic area
DD = company division
X = distinguishing identifier

Elsewhere, although a longer name is allowed, a queue manager is conventionally given a short
name.

¹ There are not generally so many queue managers that this causes any problem.

¹ Many queue managers use the first 8 characters when generating unique message identifiers.

4 MQSeries - Standards and conventions

 Unclassified

¹ MQSeries for Tandem NSK uses the first 7 characters as the root of subvolume names.

¹ The naming convention for channels in this document incorporates the connected queue
manager names, and channel names are limited to 20 characters.

A typical choice would be to make it the same as the network host name. Otherwise, try a
convention similar to these examples illustrated below.

 ¹ Example: CCCDDFNN

CCC = city identifier
DD = company division
F = queue manager function (eg Test)
NN = numeric identifier

 ¹ Example: SSSCCFNN

SSS = stock ticker symbol
CC = city identifier
F = queue manager function
NN = numeric identifier

The numeric identifier in these examples could be appropriate where a processor has multiple
queue managers.

For a Queue Manager Alias, add a suffix to the name
The main use for this would be to support "classes of service". There are fewer constraints on
the length of an alias name; it could be more than 8 (or 4 on MVS) for example.

In fact this feature is usually related to defining multiple channels between a pair of queue
managers. In this case, use the same suffix for associated channels and queue manager aliases.
The limit on the length of channel names suggests limiting this kind of suffix to 3 characters.

¹ Example 3, the AIX queue manager in Example 2 on page 3 needs an alias so it can
receive very large reply messages on a separate channel.

DEFINE QREMOTE('JUPITER4_XL') REPLACE +

DESCR('Queue manager alias for very big messages') +

 RQMNAME('JUPITER4')

Default Queue Manager
Don't identify one Queue Manager as the default

Some environments can tolerate an exception, most notably CICS/ESA, where any CICS region
is always connected to a single Queue Manager.

Most platforms can have more than one queue manager defined on a system. Don't pick one as
the default; this is a common source of error, selecting the wrong queue manager.

Even when there is only one queue manager configured, don't define it the default. Doing so
can make some operations a little easier, but it leaves open the scope for errors if another queue
manager should be added at a later date.

MQSeries for OS/400 is limited to one queue manager on any system, so any queue manager is
effectively a default one. However, in the interests of general MQSeries consistency, try to
avoid an assumption of a default queue manager even here.

Pass the connection name as a program parameter
This allows a program to run unchanged on any appropriate Queue Manager. Hence it could
have multiple concurrent instances; or a queue driven service could be moved to a different
queue manager without affecting the code. The mechanism for passing this data can be any

 Chapter 2. MQ Network Structure 5

 Unclassified

suitable programming technique; a system parameter might be an obvious choice, but including
the name in a file could be acceptable too.

Note that triggering would usually provide this information as part of the MQTMC2 structure.
There are a couple of exceptions.

¹ The supplied triggering functions for CICS/ESA and OS/400 do not include a queue
manager name in the parameter. Programs triggered in these two environments already
have the queue manager identified.

¹ Some compilers and systems restrict the length of system parameter they can accept, and so
exclude this part of the MQTMC2.

 Storage Class
Name it to describe the function

There shouldn't be too many of these so a simple name is sufficient. If it is a storage class for
IMS Bridge queues, you could just call it "IMS" for example.

Note that there is no value in including the fact that it's a storage class as part of the name.
They have a separate name space from other MQSeries objects, and the fact they appear in this
object list should be sufficient indication.

Dead Letter Queue

If MQSeries can detect an error synchronously, it is reported directly to the application; if a message can not be
delivered after that it is a candidate for the Dead Letter Queue. This preserves a message that can not be processed
immediately, without stopping valid messages in the meantime.

¹ The facility is available on all platforms except MQSeries for Windows V2.

¹ MQSeries for OS/400 documentation refers to it as the "undelivered-message" queue.

Although normally described as a channel function, there are other MQSeries components that write to the Dead
Letter Queue, including Trigger Monitors and the IMS Bridge.

Include a Dead Letter Queue on all queue managers
On all queue managers, use a local queue called SYSTEM.DEAD.LETTER.QUEUE.

This is created automatically by some MQSeries platforms. On those platforms that do not,
create a queue with this same name; it will cause less confusion to use a common name
everywhere.

It is still necessary to configure the queue manager, by identifying this queue in its DEADQ
attribute.

If a Dead Letter Queue is required, and is not available, a channel will fail.

Some users have avoided defining a Dead Letter Queue in order to detect errors sooner, but that
is not recommended. The problem with this approach is that one rogue message is sufficient to
stop all messages across a channel.

Consider ways to avoid unnecessary DLQ messages
Some platforms allow an automatic retry if a message can not be delivered immediately. It is
specified by parameters on a receiving channel, and the conditions can be changed through a
Retry Exit.

The channel is paused while such retry is in progress. Thus, transient errors can be tried again
to avoid messages being written to the Dead Letter Queue unnecessarily.

6 MQSeries - Standards and conventions

 Unclassified

A further possibility is for applications to specify MQRO_DISCARD as a Report Option. Such
a message would not be placed on the Dead Letter Queue, but discarded instead. In fact this
option would often be combined with MQRO_EXCEPTION_WITH_FULL_DATA, so an
undelivered message would be returned to the Reply Queue, sometimes described as "return to
sender".

Process the undelivered messages
Messages that are put on the Dead Letter Queue take the form of the original message data,
preceded by a dead letter header - defined by the MQDLH structure. The header includes the
intended destination queue, and queue manager, for the message, and the Reason it could not be
delivered.

Listing the contents can be sufficient for a test system. A production environment must have a
process, triggered or scheduled at intervals, to dispose of the messages appropriately. Some
platforms supply a Dead Letter Queue Handler (rules driven); otherwise you would need a
program for this purpose.

¹ Construct rules based on queue names, message type, feedback code, etc. It can be
appropriate in some cases to retry or discard certain messages.

¹ Where no such action is appropriate, transfer the undelivered message to an application
queue for action there.

 Channels

 Transmission Queue
Use exactly the same name as the destination queue manager

MQSeries will select this name in the absence of other information. Note you can not rely on
there being a QREMOTE to define a transmission queue in all cases. A notable example is a
message to the Reply Queue, which will only have a destination Queue Manager name from
which to determine the routing.

¹ Example 4, the AIX queue manager in Example 2 on page 3 needs a transmission queue to
access the MVS hub queue manager.

DEFINE QLOCAL('MARS') REPLACE +

DESCR('Transmission queue, sending to MARS') +

 USAGE(XMITQ) TRIGGER +

 INITQ('SYSTEM.CHANNEL.INITQ') +

 TRIGDATA('JUPITER4/MARS')

If there is more than one channel, add a suffix
This is connected to the earlier standard for Queue Manager aliases, and their association with
classes of service. Note, the technique is to specify your queue manager alias as the
ReplyToQMgr; the remote system would thus use that as the transmission queue for its reply.

Use the same suffix for a transmission queue and its destination Queue Manager alias in this
situation.

¹ Example 5, the same AIX queue manager has a separate channel to receive very big
messages.

DEFINE QLOCAL('MARS_XL') REPLACE +

DESCR('Transmission queue, big messages to MARS') +

 USAGE(XMITQ) TRIGGER +

 INITQ('SYSTEM.CHANNEL.INITQ') +

 TRIGDATA('JUPITER4/MARS_XL')

 Chapter 2. MQ Network Structure 7

 Unclassified

Take care with Default transmission queue
This feature is not available on all platforms; where it is supported, it is a convenient way to
avoid having to define a transmission queue (and channel) for all possible destinations.

It is particularly useful for end point nodes in an MQSeries network. It can also be safe to use
this facility for example when a branch office queue manager sends messages through a
headquarters hub system.

The configuration that must be avoided is a loop of default transmission queues. MQSeries does
not detect this situation, and continues to forward the messages as directed.

Make triggering standard for a Sender channel
Configure its transmission queue for triggering.

¹ Always use trigger type FIRST, and TRIGMPRI(0).

¹ On Version 5 platforms, the corresponding channel name is specified as Trigger Data.
Elsewhere configure a Process object as documented.

¹ Use the supplied Initiation Queue name, 'SYSTEM.CHANNEL.INITQ'

Remember to have started the Channel Initiator.

A Requester channel is intended to initiate message transfer from the destination system. Its
corresponding Server channel does not therefore need to be triggered.

 Message Channels
Naming convention is <source>/<target>

<source> and <target> are the names of the communicating queue managers. The MQSeries
limit is 20 characters for this name.

Note that this is equivalent to <source>/<xmitq> if you follow the standard naming for a
transmission queue. Moreover, this correspondence can be generalized to multiple channels, and
<target> is then the receiving queue manager alias. The previous examples illustrate channel
names following this convention.

The recommendation, in order for this generalization to work, is that the channel, its
transmission queue, and the destination queue manager alias, all have the same suffix.

The same convention applies to dynamic channels, introduced in MQV5. If a Sender channel is
started, and the corresponding Receiver channel has not been defined, the Receiver is created
automatically.

Include the transport type if it adds value
Some users have found it unnecessary to include the transport type in the naming convention for
channels. If all you have is a TCP/IP network, it does not really help to use the limited
characters in all the channel names to say so.

Other users though, particularly where a queue manager is in a mixed network, have found it a
useful suggestion to indicate the network protocol in the naming convention. If this is needed,
make the transport distinction evident in the class of service suffix; for example
'MARS/JUPITER4_SNA'.

 Client Connections
Don't create a channel for each separate client

In this case there is no source Queue Manager to construct the longer form. Defining a separate
channel for each client represents unnecessary effort.

8 MQSeries - Standards and conventions

 Unclassified

Use the same name, 'CLIENTS', on all queue managers. If multiple connections have to be
configured, such as different transport types, add a suffix to this name.

This convention works when clients are configured with environment variables; it also works
with a client definition table, for example a client that has multiple queue managers it can
connect to.

MQSeries for Windows V2

These queue managers have two types of object not found elsewhere, Channel Groups and Connections. Since the
names are not cross platform, there is less need to impose a system wide standard. (There is less need to be
rigorous about upper case too; the same user must make them match either way.)

¹ For a Channel Group, name it to describe the function performed - that it is a dial up group, or the channel
group to access a particular application for example.

If the system has multiple queue managers, don't use duplicate channel group names on the system.

¹ A Connection identifies a combination of a queue manager and (optionally) a channel group. Name it the same
as the Channel Group. If it is a Standalone connection use the queue manager name.

 Chapter 2. MQ Network Structure 9

 Unclassified

 Chapter 3. Applications

These recommendations assume a suitable MQSeries network, such as that described in the previous chapter. The
goal here is to make application code transparent to any configuration changes.

 Queues

 Names
Name a queue to describe its function

A message driven program provides some service. Naming a queue to describe this service
seems obvious; the converse, excluding unrelated information from the name is less so.

Use hierarchical names for application queues
The form that is often recommended is as follows.

 <application>.<function>

MQSeries uses the prefix 'SYSTEM.*' for objects it delivers; don't use this for application
related queues.

Using a prefix to group related queues simplifies some areas of MQSeries administration. For
example,

¹ enquiries about queues

¹ MVS security administration

¹ Dead Letter Queue handler

In a bigger application, it can be appropriate to adopt more levels in this naming hierarchy. For
example,

 <system>.<application>.<function>.<sub-function>

In test environments, you could similarly consider making the high level qualifier the User ID of
the owner of a test queue.

Don't include the Queue Manager name
MQSeries generally identifies a queue by a pair of names, the queue name itself and the
containing queue manager. Including the queue manager as part of a queue name is at least
superfluous then.

If a queue is moved, a new queue manager name must be identified, but there is no need to
change the queue name as well. Where MQSeries supports a directory function, applications
would see no change at all.

Where an application is rolled out over multiple nodes there is no need to invent a new queue
name for each instance.

Don't include the queue type in the name
MQSeries administration makes queue types transparent to applications. Don't make the type
visible in the queue name; if the type is changed later, the queue name does not have to be
changed as well.

10 MQSeries - Standards and conventions

 Unclassified

Pass the name of the input queue by parameter
Each service needs a QLOCAL to provide its input. Generalise the application code by passing
the queue name as parameter. Multiple instances of a service can use different local queues,
without having to change the code.

Note that programs that are triggered will meet this condition; the local queue name is part of
the trigger parameter.

Consider including program logic to test whether its parameter is really a trigger message
structure, or something that might have been passed from the system environment. This would
support a program that could be invoked either by triggering or by command line.

 Versions
Indicate a version by a suffix to local queue name

There may be occasions when multiple versions of a queue exist at the same time. The reason
may be related to different versions of the function driven by the queue; or the application may
assign a different local queue for certain time intervals.

Indicate the version in the form of a suffix on a local queue name. For example,

 <application>.<function>_TEST

 <application>.<function>_V2.1

 <application>.<function>_THURSDAY

A queue name as a parameter will ensure the application code is transparent to this.

Use aliasing to PUT messages to the right version
This is particularly useful where a message is PUT to a queue to request a service. The choice
of the correct version of the local queue should not be the responsibility of the requesting
program.

Use the same queue name across all platforms to PUT messages.

¹ Define it as QALIAS or QREMOTE as appropriate; don't include the queue type in the
name.

¹ If you have a Directory service, use a QALIAS with SCOPE(CELL) instead.

Don't include the version suffix in this alias name. When the time comes to start using a new
version of the local queue, just change these alias definitions. Programs will not need to be
changed when the version changes in this way.

Note that there is an additional use on MVS for using aliasing in this way - it enables RACF
permissions for GET and PUT to be separated.

 Reply Queue
Naming convention <application>.REPLY

This fits in with the hierarchy convention described above.

Specifically don't include the queue type, QM or QL, since this is an aspect of the configuration
that could be varied, such as for performance tuning.

An Alias could be also used, for example if a shared reply queue has multiple versions. Note
that MQSeries will have resolved this to the correct local queue in any Message Descriptor that
is sent.

 Chapter 3. Applications 11

 Unclassified

Options for Reply Queue type
There are various application approaches to processing a reply queue which imply different
queue types. The naming conventions above works in each case, though there are different
considerations in each case. Where choices can be made through configuration, consider writing
the program logic so that it is transparent to this tuning.

Exclusive
The fixed name is usually a Model Queue, opened to INPUT the replies; the generated
Dynamic queue is specified as the MQMD.ReplyToQ. As a temporary dynamic queue it
would be appropriate for replies to non-persistent requests. All replies belong
exclusively to the requesting program, and the queue is deleted when it is closed.

In fact a similar program could also work when the reply queue is local, and opened for
Exclusive Input; persistent messages could then be included.

Shared
Getting reply messages (selecting by CorrelId) from a shared local queue can have a
performance advantage - certainly in avoiding the overhead of creating a new dynamic
queue each time, but often in general message retrieval as well.

This of course requires each request to have been sent with a unique MessageId, and any
intermediate server programs to process the Report options properly.

Note the design consideration in this case, that replies received after the requesting
program has finished can remain unnoticed on the reply queue. Use of a shared reply
queue in this way would need to have designed a convenient way to remove replies that
are no longer wanted.

Class of service
A Reply Queue Alias would typically be specified in the Message Descriptor, and thus
allow a class of service for replies to be determined by configuration instead of coding
an explicit Reply Queue Manager.

Note that this name can not be opened for INPUT though; you would need the resolved
name for that.

Asynchronous
Handling replies in a separate process from requests is less simple for the application, but
its uses can be more general.

¹ Consider triggering the reply queue process.

¹ This approach works well with a permanent dynamic queue too. The queue that
follows the naming convention is the model queue.

A permanent dynamic queue should be deleted when all its messages have been
processed, but it can remain in existence due to a failure. Consider specifying a
Retention Interval. It can be used, in combination with Creation date and time, to
highlight a dynamic queue which had not been deleted in a reasonable time. It
would still need some administration process to remove such unwanted queues.

Design for old replies
These occur when a requesting program has a time limit to wait for a reply message. If a reply
arrives after that time, the application must be designed so that such messages are either
discarded or processed later.

12 MQSeries - Standards and conventions

 Unclassified

 Dynamic Queues

When MQSeries creates a dynamic queue, the first part of the resulting queue name can be controlled through the
Object Descriptor. The appropriate name standard depends on the type of dynamic queue created.

Temporary - accept the MQSeries default
The MQSeries default for a dynamic queue prefix is 'CSQ.*' on MVS, 'AMQ.*' on other
systems. Since temporary dynamic queues are deleted on MQCLOSE, they will not have to be
controlled by the MQA; so leave the default unchanged.

Permanent - supply an application prefix
A permanent dynamic queue can remain across application invocations. It may need to be
managed by an MQA, so ensure the queue follows the hierarchical naming convention. Specify
an application prefix in MQOD.DynamicQName, followed by an asterisk.

Note that this application prefix must not exceed 32 characters, in order that MQSeries may
generate a unique name with the remaining characters.

Queues for Bridges and Links
Include the bridge or link type in the application hierarchy.

For example,

 <application>.IMS

 <application>.CICS

 <application>.R/3

 Namelists
Use a hierarchical name as before

Don't indicate in the name that it is a Namelist; they have a separate name space, and so the fact
that they are Namelists is completely clear from the context.

 Triggering

You do not need to have triggering in all cases. For example a program could instead be scheduled in other ways -
for example on demand, at a time of day, or as part of the system start.

 Programs
Write programs to recognize whether they have been triggered

This recommendation applies even if the immediate intent is to schedule a program without
triggering. It requires little extra code, and gives the application an ability to be scheduled
differently in the future, without having to revisit the program logic.

¹ A program initially written to be invoked from the command line can subsequently be
configured for triggering.

¹ A function designed for an automated set of application processes can be invoked as a
stand-alone task.

Remember that triggered programs must tolerate finding an empty queue; there are conditions
that generate an extra trigger message rather than risk missing a trigger.

 Chapter 3. Applications 13

 Unclassified

A tip to avoid timing problems, particularly when using groups and segmented messages, is to
specify a longer Wait Interval for the initial MQGET in a triggered program.

 Process
If a queue has its own Process, use the same name as the queue

Include the version suffix if the queue has one; there may in any case be a separate executable
for each instance of the queue.

Note that Processes have an independent name space. Hence there is no value including the fact
it is a PROCESS as part of the name.

If a Process is shared, describe the collective function
Where several queues are handled by a common program, define a single Process object. Use a
suitable hierarchical name for the collective function.

If multiple versions of a queue are read by the same program, just drop the version suffix from
the queue name.

Use Environment Data as a parameter to the trigger monitor
This particularly applies if writing your own Trigger Monitor.

User Data was intended to be used as parameter information to the triggered program; Trigger
Data similarly provides a parameter that is specific to one queue.

All fields are passed to the program in any case, but the original intent for the separate
Environment Data was that it could be a parameter to control the function of a trigger monitor.

Some supplied trigger monitors do not use this information. On OS/400 it can be used for
example to select a job priority, or CICS region, for the task that gets run. On UNIX, a value
of '&' causes the program to be triggered as an asynchronous process.

 Initiation Queue
Use system defined queues for simple general triggering

Some platforms define standard initiation queues when a queue manager is created. These are
the defaults for supplied trigger monitors. For example,

 SYSTEM.DEFAULT.INITIATION.QUEUE

 SYSTEM.CICS.INITIATION.QUEUE

Where these are created, and triggering requirements are simple, the best approach is to use the
supplied initiation queue.

Otherwise, use a hierarchical name
A reasonable approach may be to have an initiation queue for the various functions in an
application. Then use a name of the form,

 <application>.INITQ

Hint - to stop any trigger monitor, disable GET for its INITQ
Trigger monitors are designed to be long running. They will stop when MQSeries or the
systems ends; or the trigger monitor task can be cancelled by an operator.

MQSeries for MVS/ESA provides an interface to stop its CICS Task Initiator function cleanly,
without disrupting other operations. A more general way to close a trigger monitor, in any
environment, would be to disable GET on the Initiation Queue; it works where trigger monitors
allow shared input too.

14 MQSeries - Standards and conventions

 Unclassified

 Trigger Control
For temporary disabling use NOTRIGGER

This was the intent of this parameter, when there is an application need to suspend triggering
temporarily. (Compare this with the operation of STOP CHANNEL for example.) Use trigger
type NONE for a queue that must never be triggered.

Avoid trigger type DEPTH
The original intent of this feature was to support consolidation of replies to related parallel
requests. The reply queue for the set of related messages would be a permanent dynamic queue,
triggered when all the replies had arrived.

The main problem is that this type of triggering is disabled when the trigger occurs. There is no
automatic re-triggering if all the messages are not processed. This simple approach does not
cater for cases where replies are incomplete within a time limit.

Never use trigger type DEPTH to monitor a queue threshold. The correct way to do that is
using Performance Event messages.

Avoid trigger type EVERY
This might appear suitable for triggering transactions that each process just one message. The
design was not originally in response to any known user requirement.

The problem occurs when the system is re-started and there are several messages recovered on a
queue. Only one trigger is generated no matter how many messages are on the queue.

A preferred approach is trigger type FIRST, and write applications to continue processing more
messages.

If a transaction really must process only one message, trigger type FIRST is still easier to get
right. At least it would leave no messages untriggered, because closing a queue with any
remaining messages results in another trigger.

Achieve parallel execution if needed through a user written trigger monitor; or have multiple
queues.

Take care with groups and segmented messages
MQSeries Version 5 introduced Groups and Segments, and there are options on MQGET to wait
for a complete collection of physical messages.

Triggering is still based on physical messages though. An application would be triggered when
the first physical message arrives, but may find no messages available if using these new
options.

You may need to wait longer when an application expects a complete group or logical message.
This would be needed to avoid a triggering loop.

 Programming Conventions
Accept queue manager and input queue name as parameters

As explained earlier, it enables a program or transaction to be run unchanged, and take input
from any queue, and on any appropriate queue manager.

Test for Completion and Reason Codes
The purpose of having separate return values is that Completion Code offers a simple test of
whether the MQI call worked at all; Reason Code gives the specific cause.

Test for any reasonably anticipated Reason Codes; report any others as a number.

 Chapter 3. Applications 15

 Unclassified

Similarly, when processing a Reply Queue, check for Report Messages; treat the MQMD
Feedback values in the same way as Reason Codes.

Detect the condition of a queue manager quiescing
The purpose of a quiesce mode of stopping a queue manager is to allow applications to end
cleanly. Request FAIL_IF_QUIESCING where MQI provides this option. Always use this
when MQGET has the WAIT option.

The exception is when using MQI to finish a transaction already in progress. Specify
MQGMO_FAIL_IF_QUIESCING on the MQGET which starts a new transaction; then omit the
option on further MQI calls needed to complete the unit of work.

Avoid repeated MQCONN and MQOPEN
Most MQSeries implementations particularly optimize the performance of MQGET and MQPUT
where possible by having work done in the earlier calls. It is therefore more efficient to issue
MQCONN and MQOPEN, and then use the resulting handles to process several messages where
possible.

Take particular care when MQI calls are grouped to form a higher level function. Some user
implementations of such functions have led to repeated MQCONN or MQOPEN.

Generally use MQCONN
Most environments require an MQCONN call anyway. If MQCONN is called from an
environment that is already connected, like CICS/ESA or a program called synchronously in the
same process, MQCONN will complete quickly. It returns the connection handle that already
exists, and a Reason Code of MQRC_ALREADY_CONNECTED. Hence its use can be
appropriate in all environments.

MQSeries for OS/400 performs an implicit MQCONN whenever MQOPEN is called without
having first connected to the queue manager. In this case there is an implicit MQDISC when
the last, or only, queue is closed. This can result in multiple MQCONNs in a program.

Use CCTMQM in an interactive environment, or for CL programs that invoke MQSeries
commands. This establishes an MQSeries connection, and so precludes an overhead for repeated
implicit MQCONN in that environment.

Use default priority for a new message
The intended basic convention for a new message, like a Request, was to use the queue defaults
for persistence and priority. This would allow tuning to be performed readily in the queue
configuration, rather than in the program; Alias queues could be used for messages of differing
characteristics.

This is sound advice for Priority, but not for Persistence. An application would generally
know whether the messages it originates need to be persistent, so an explicit MQMD option is
quite reasonable. On the other hand there have been reported cases of lost messages, where
remote queue definitions had incorrectly specified DEFPSIST(NO).

Select the Report Options required
The default is that MQSeries does not send a Report message to indicate an asynchronous
exception.

If any Report Option is specified (or the message is a Request):

¹ Specify a Reply Queue in the Message Descriptor

¹ Clear the Message ID, so that MQSeries generates a unique identifier for the message.

Always specify MQMD.Format
Even where not immediately needed, there is no harm in doing this. The default is that the
message format is undefined to MQSeries. That could prevent a future need for message data
conversion, and can cause some applications to fail.

16 MQSeries - Standards and conventions

 Unclassified

The associated representation fields are usually safe to leave as the default. An exception is
where applications operate using a different CCSID from the queue manager, and must therefore
specify the correct value in the Message Descriptor. Take care with certain workstation COBOL
implementations that offer an option of using mainframe or workstation data representation.

Generally specify CONVERT on MQGET
This is the preferred way to perform a basic message conversion, like character strings, between
disparate platforms. (More complex data transformation is provided by certain tools, like
MQIntegrator; that is separate from this discussion.)

The message is converted only if necessary, and at most once. It also applies when MQGET is
performed by an MQ-client.

A message whose conversion fails sets the MQMD Encoding and CCSID to the actual
unconverted representation. Therefore reset these values before each MQGET.

Take care with unlimited GET WAIT
This is necessary with certain long running programs, like Trigger Monitors. For most
applications it would be better to set some time limit; then take some other action, or close
down and wait to be triggered when a message does arrive.

Removing a bad message
This is a common design question. A unit of work is driven by an input message but
subsequently fails. Actions already performed should not be committed; but rolling back the
transaction would leave the message remaining on the input queue, and prevents an error
response being MQPUT under syncpoint.

MQSeries for MVS/ESA provides an MQGMO_MARK_SKIP_BACKOUT facility. It is the
ideal way to program for this case.

The more general technique, requiring multiple MQGETs but available across platforms,
involves testing the Backout Count on any message retrieved.

Allow for bigger messages
A common error is to make incorrect assumptions about the required buffer size. The arrival of
a production message bigger than any tested then causes an application error.

¹ If the application processes messages of a limited size, the simplest approach is to specify
the Accept Truncated Message option to remove bigger messages put on the queue in error.

¹ An application that processes messages of variable size should not use this option as a rule.
A message too big for the supplied buffer thus remains on the queue, and MQGET returns
the required Data Length. The program needs to be prepared to re-allocate a larger buffer,
up to a reasonable limit, and then do the MQGET again.

¹ The arrival of over-sized messages in a queue can be prevented by using the Maximum
Message Length attribute of the queue. Changing this attribute does not affect messages
already on the queue though, so using this value to determine a buffer size would not
entirely remove the need for an application to allow for bigger messages.

Don't assume a fixed output queue to send results
An initial implementation may involve communication between just two programs. For example
A sends a request to B; B replies to A.

Rather than sending the reply to a fixed queue name, make the program more general by
sending the result to the Reply Queue instead. Similarly don't assume the reply is local, but at
the Reply Queue Manager.

 Chapter 3. Applications 17

 Unclassified

Reply with like characteristics
There are several conventions when replying to a message.

¹ Generally reply with like characteristics such as persistence or priority. (Consider using the
same MQMD for input and reply for example.)

¹ When passing context, specify Pass All Context if a message is forwarded unchanged; Pass
Identity Context if the reply is the result of some processing.

¹ Process Message ID and Correlation ID as specified in the Report Options. Don't assume
the standard convention - copy Message ID to Correlation ID, and request new Message ID.

The Report Options are generally removed for the reply message.

¹ Where the request was sent with an Expiry value, it would be received, if not already
expired, with an Expiry value which represents the amount of unexpired time remaining. A
Reply with "like characteristics" would therefore imply a response message with an Expiry
value.

A design consideration is whether this is appropriate for the application. An alternative
convention, when a message has been processed, is to send the reply with Unlimited Expiry
instead. This is the convention used when MQSeries sends Report messages.

If, instead of a Reply, the message is to be transferred to another queue, forward it with the
Expiry value that was read - it will be either Unlimited, or the amount of unexpired time.

Avoid long-running units of work
Performance can be degraded as the duration of a unit of work becomes longer; and keeping
them short allows a queue manager to quiesce faster.

Make MQDISC conditional
This is related to the earlier convention of including MQCONN. Call MQDISC before ending
the program, but not if MQCONN had earlier returned with Reason Code
MQRC_ALREADY_CONNECTED. This approach is appropriate in all environments.

18 MQSeries - Standards and conventions

Sending your comments to IBM
MD01: MQSeries - Standards and conventions
Version 1.0

MD01 SCRIPT

If you especially like or dislike anything about this book, please use one of the methods listed below to
send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on the accuracy,
organization, subject matter, or completeness of this book. Please limit your comments to the information
in this book and the way in which the information is presented.

To request additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments
in any way it believes appropriate, without incurring any obligation to you.

You can send your comments to IBM in any of the following ways:

¹ By mail, use the Readers’ Comment Form.

 ¹ By fax:

– From outside the U.K., after your international access code use 44 1962 841409
– From within the U.K., use 01962 841409

¹ Electronically, use the appropriate network ID:

 – IBMLink: IBMGB(TSCC)
 – Internet: tscc@hursley.ibm.com

Whichever you use, ensure that you include:

¹ The publication number and title
¹ The page number or topic to which your comment applies
¹ Your name and address/telephone number/fax number/network ID.

Readers’ Comments
MD01: MQSeries - Standards and conventions
Version 1.0

MD01 SCRIPT

Use this form to tell us what you think about this manual. If you have found errors in it, or if you want
to express your opinion about it (such as organization, subject matter, appearance) or make
suggestions for improvement, this is the form to use.

To request additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized remarketer.
This form is provided for comments about the information in this manual and the way it is presented.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your
comments in any way it believes appropriate without incurring any obligation to you.

Be sure to print your name and address below if you would like a reply.

Name Address

Company or Organization

Telephone Email

ÉÂÔMQSeries - Standards and conventions
MD01 SCRIPT

