
w h i t e p a p e r

w w w. n e o n s y s . c o m

Occam’s Razor Guide to Mainframe Integration

c o n t e n t s

Occam’s Razor Guide to Mainframe Integration 2

NEON Systems, Inc. Corporate Headquarters
14100 Southwest Freeway, Suite 500
Sugar Land, TX 77478
Phone: 281.491.4200 Fax: 281.242.3880

NEON Systems New York Regional Sales Office
1002 Washington Street, Suite 111
Hoboken, NJ 07030
Phone: 201.653.8113

NEON Systems Dallas Regional Sales Office
HQ Colonnade Center, 15305 Dallas Parkway, Suite 300
Addison, TX 75001
Phone: 972.387.7440 Fax: 972.715.2099

NEON Systems UK, Ltd.
1 High Street, Windsor, Berkshire SL4 1LD
United Kingdom
Phone: +44.1753.752800 Fax: +44.1753.752818

NEON Systems Japan
2-6-2, Ootemachi, Chiyoda-ku, Tokyo 100-0004
Japan
Phone: +81.0.90.8027.9145 Fax: +81.0.3.6202.9151

©2004 by NEON Systems, Inc. All rights reserved. The NEON
logo, Shadow, Shadow Direct and Shadow Web Server are
registered trademarks, and Shadow Connect and Shadow Console
are trademarks of NEON Systems, Inc., in the U.S.A. and in other
select countries. All other trademarks, service marks and product or
service names are the property of their respective owners.

Executive Summary 3

What is Occam’s Razor? 4

Causes of Complexity 4

Heterogeneity of Vendors 5
Multiplicity of Support Organizations 5
Middleware Distance Between Consumer and Provider 5
Systems Management Requirements for End-to-End Coverage 5

Cost of Complexity 6

Hard Costs 6
Software 6
Hardware 6

Soft Costs 7
Business Agility 7
Personnel 7
Availability 7

Emergent Complexity in Mainframe Integration 8

Mainframe Uniqueness – The Provider Perspective 8
Application Development – The Consumer Perspective 8

Mainframe Integration 10

Taxonomy of Mainframe Integration 10
Mission-Critical Integration 10
Informational Integration 10
Service-Oriented Architecture 11
Event-Driven Architecture 11

Requirements 11
Service-Oriented Architecture 11
Event-Driven Architecture 13

Common Approaches 14
Service-Oriented Architecture 14
Event-Driven Architecture 16
Summary 17

Composite Applications 18

Application Development Perspective 18
Metadata 18
Transactions 18

Systems Administration Perspective 19

Occam’s Razor Applied to Mainframe Integration 20

Occam’s Ideal Solution 20

Shadow – The Only Integrated Solution for All Mainframe
Integration Requirements 21

The Benefits of Simplicity 22
Hard Costs 22
Soft Costs 23

Summary 24

Occam’s Razor Guide to Mainframe Integration 3

Executive Summary
Few organizations today are embarking on significant new application
development that runs in the traditional IBM mainframe environment.
Most modern applications, designed to improve operational efficiencies
and streamline customer, supplier, partner and employee interaction, run
within J2EE or .NET environments on distributed UNIX or Windows server
systems. However, for the Global 2000 and many government agencies
the vast majority of the data that these new applications require is
maintained under control of IBM mainframe systems, specifically, legacy
database systems such as Adabas, IDMS, IMS/DB and VSAM, or
relational database systems such as DB2. In many cases the data itself is
meaningless without business rules, buried within legacy CICS or IMS/TM
application environments to interpret it.

The reasons for a white paper on mainframe integration is that enabling
those new applications to access the mainframe resident information isn’t
just important; without it, the applications themselves are worthless since
they have no corporate information upon which to operate. For some
peculiar reason this rather fundamental point has failed to register on the
radar screens of corporate architects responsible for building out
middleware infrastructure. Significant time is certainly spent on analysis
of application servers, messaging systems and Integration Brokers, yet
the last mile of integration to the crown jewels of most organizations is
relegated to an afterthought. The net effect of this complete absence of
strategy, in respect to mainframe integration, has resulted in many failed
projects – a complete application being only as strong as its weakest link.

This paper explores the underlying reasons why mainframe integration,
if not approached strategically, is almost guaranteed to fail or at best
be a long-term drain on both hard and soft finances without providing a
service upon which the business can rely. It looks at why the traditional
approaches have failed to deliver reliable and cost-effective mainframe
integration and suggests a strategic and far simpler alternative, proven to
work in the world’s largest organizations. The entire piece is set against
the reasoning set forth in the scientific precept known as Occam’s Razor.

Occam’s Razor Guide to Mainframe Integration 4

What is Occam’s Razor?
Ockham is a small town some 15 miles southwest of central London.
Today it is known largely for its commercial airways navigation beacon
and the fact that it is a rather convenient cut-through when the London
orbital freeway is blocked. Obviously, it wasn’t always thus. In the 13th
century a chap by the name of William was born in Ockham; although,
back then it was spelled Occam. Nothing remarkable in that, however,
William, almost unknowingly, defined a scientific precept that has been
used in some of man’s most important discoveries ever since. From
religion to relativity, the precept, known as Occam’s Razor, has distilled
scientific thinking and provided a pathway to reasoned solutions in
complex problems.

In its original form, William of Occam suggested, “pluraitas non est
ponenda sine necessitate.” In English this translates to “plurality should
not be posited without necessity,” which is often simplified to say “that
which can be done with fewer, is done in vain with more.” This has been
interpreted down the years in many ways; however, at its core Occam’s
Razor is understood to mean that if there are several solutions to the same
problem, the simplest will be correct. Many of history’s most renowned
scientists have applied the Razor successfully, and it is now a core control
in scientific reasoning.

Its relevance in computing needs little explanation. For many years
simplicity has been a strategic directive in enterprise architectures.
However, as composite applications, which depend on legacy data and
applications, become commonplace on the project plans of most large
organizations, Occam’s Razor must be applied to legacy integration.
Seen by many as an afterthought and worthy of little strategic
consideration, mainframe integration implementations have rarely
attracted a strategic approach. Consequently, most organizations with a
history of linking legacy systems with distributed applications find
themselves with multiple fragmented and incompatible systems. Such
implementations have huge implications for business agility, costs and
application reliability.

Causes of Complexity
Complexity in commercial computing systems emerges from a relatively
narrow set of reasons. Many of these reasons exist in the wake of the
shift away from the single-vendor, vertically integrated solutions of the
1970s and 1980s. Cost savings from the increased competition brought
by a move to a more varied vendor environment have been offset by the
increased systems management and consulting costs required to
implement systems that are no longer integrated at source. Standards
and other initiatives, aimed at making systems from various vendors
compatible, are an important step toward mitigating some of these costs,
but will certainly not eliminate all of them; the most intractable exist as a
fundamental consequence of the modern computing landscape.

Occam’s Razor Guide to Mainframe Integration 5

Heterogeneity of Vendors
Heterogeneity of vendors is a defining element of today’s commercial
computing landscape. The vertically integrated computing platform,
provided by IBM of old, has given way to various commercial-off-the-shelf
(COTS) packages built to address the business processes of various
industries, and provide economies of scale by eliminating the costs of
duplicate bespoke application development. The net result is that
organizations now maintain more significant relationships with suppliers
of IT software, hardware and services than ever before. Such vendor
diversity makes it difficult for customers to assign responsibility to any
single vendor for integration issues. This is problematic at a commercial
level, but even more insidious at a technical level.

Multiplicity of Support Organizations
With multiple support organizations from multiple vendors responsible for
different elements of an end-to-end service, seeking timely resolution for
failures somewhere along the pathway from provider to consumer can
be difficult if a failure occurs close to the hand-off point between one
technology and another. Such scenarios require the support organizations
of the vendors involved to collaborate in search of a resolution. With no
way to directly assign ownership, it is difficult for a customer to hold any
single vendor responsible. Even the introduction of a service provider
layer does little to speed the process. The best solution is to seek the least
possible moving parts at inception of the project.

Middleware Distance Between Consumer and Provider
The more separate components, both hardware and software, dedicated
to delivery of middleware to link the ultimate consumer of the service and
the underlying applications and data required, the more complexity will
be experienced. This includes hardware platforms deployed specifically
to support middleware products (and the attendant failover provision)
and software translation layers for turning data into one format or
structure from another.

Systems Management Requirements for End-to-End Coverage
Systems management is a core requirement for any commercial system.
This may seem like an obvious statement as systems management exists
to ensure that the service to the end-user measures up to expectations.
In order to satisfy this objective it is critical that threats to that service,
from whatever source, are identified and diagnosed in as timely a manner
as possible. Most individual elements of an integrated system will provide
their own systems management capability, but rarely will the hand-off
between juxtaposed elements be seamless. Tracking a transaction, which
flows across multiple software and hardware layers, from end-to-end is a
complex task where those layers have nothing technologically in common.
The net result, for the service management personnel, is a bank of systems
management consoles with loose, often human, systems for tracking
transactions as they flow through the entire system.

Occam’s Razor Guide to Mainframe Integration 6

Hard Costs

Software

The more middleware technologies employed to satisfy an integration
requirement, the higher the ongoing software maintenance and license
fees will be. For organizations with the kind of complex solution outlined
below, such fees can become material. Unfortunately the very nature by
which these technologies come to be used often masks the overall costs
associated with them. It is often the case that individual projects, faced
with a mainframe integration requirement, will purchase their own
solution; the costs being defrayed under the cost of the project itself.
Consequently, there is rarely a systematic way to determine how much
has been spent on mainframe integration across the entire enterprise.

Hardware

Most mainframe integration solutions have significant hardware
dependencies in the form of Wintel or UNIX gateway machines. Such
architectures have ongoing hardware costs to support workload scaling
and, for mission-critical workloads, have gateway duplication to support
failover. With a fully installed gateway device running to well over
$10,000, for large implementations these costs mount up rapidly. Again,
if an organization has approached mainframe integration in a haphazard
way, a gateway farm is likely to exist for each discrete mainframe
integration scenario. This can add hundreds of thousands of dollars to
the software license fees for the mainframe integration requirements of
applications with high-availability and throughput needs.

Cost of Complexity
The only justification to embark on the kind of analysis alluded to herein
is cost-efficiency. If complexity has no impact of overall cost, then why
bother? I am sure many readers will instinctively believe complex systems
are more expensive; however, in any study that suggests alternative
strategies it is helpful to detail in precise terms the more common cost
implications of complex solutions.

In the following sections, reference is introduced to the mainframe from an
integration complexity perspective as a way of illustrating how complexity
can have attendant costs.

Occam’s Razor Guide to Mainframe Integration 7

Soft Costs
Although far less easy to track, the soft cost implications of complexity are
far more troublesome than the hard costs.

Business Agility

As has always been the case, a competitive business must be agile
enough to respond in a timely manner to opportunities and threats from
within its chosen market. In order for these responses to be enshrined in
automated processes, IT architectures must be developed that can adapt
rapidly regardless of the demands placed upon them by business
responses to these threats and opportunities. When performing an impact
analysis to assess the risk of introducing a new workload, a complex
architecture is certain to be more susceptible since it has more moving
parts to impact. Also, a complex system has more permutations to
analyze, which extends the timeframe for deploying a new system.
Furthermore, complex systems have higher risk of failure since there is
always a possibility that some combination of effects have not been
considered during the impact analysis.

Personnel

Generally speaking, personnel costs increase in line with complexity in
support of increased systems management workload. As more hardware
platforms and physical interconnections are deployed the demands on
hardware oriented management personnel increases. More significantly
is the impact on software systems management personnel as the number
of middleware technologies increases. Most integration technologies come
equipped with their own breed of systems management. Rarely is the
instrumentation integrated in a meaningful way with juxtaposed systems
management software. The net result is a bewildering array of tools to
provide end-to-end visibility for composite applications. It is expecting a
lot for such a systems management environment to be managed effectively
with staffing levels of simpler systems. With staff costs representing the
majority of expenses in any IT organization, complex IT architectures can
be seen to have a cascading effect on an overall budget.

Availability

High-availability is a defining characteristic of most mission-critical
systems; revenue is impacted when mission-critical systems fail.
Mission-critical composite applications are no different. The more moving
parts in any end-to-end application, the more scope there is for a service
interruption. Given the choice of a single technology for all mainframe
integration requirements versus multiple components, with multiple
hardware and software layers, it would be hard, from an availability
standpoint, to choose the former. Yet that is precisely what many
organizations end up deploying, as a strategic approach to mainframe
integration is rarely considered.

Occam’s Razor Guide to Mainframe Integration 8

Mainframe Uniqueness – The Provider Perspective
Unlike most commercial computing platforms, mainframes routinely
support multiple competing workloads, with multiple implementation
options. To be specific, it is commonplace for a single mainframe
environment to support the full range of business applications
implemented across CICS applications (both screen-oriented and
program-oriented), batch programs, relational and non-relational
databases, fourth-generation language systems, to name but a few.
When this run-time implementation is overlaid with typical integration
requirements such as high-volume transactional access to existing
programs, data synchronization, SQL access, Web-to-host integration,
the technological permutations for integration are mind-boggling. Most
mainframe integration implementations are never conceived from the
perspective of “mainframe” integration. Rather, integration technology is
chosen to satisfy the point requirements identified above. Examples being
a data synchronization product to keep a business intelligence data mart
in sync with the mainframe IMS database; a CICS screen-scraper product
to Web-enable a call-center application; an ODBC driver for DB2 to
allow direct data integration for a portal application; and a J2CA
interface for IMS to enable an Integration Broker product to run IMS
transactions and have processes triggered by IMS events. Each integration
requirement is tackled as a separate and distinct project from the next
because rarely are each of these needs seen as elements of a holistic
mainframe integration project; rather, they are seen as complete
integration projects in themselves to support a particular business need.
This is largely due to the pressures applied by the non-mainframe
application development and systems integration personnel.

Application Development – The Consumer Perspective
Application development and systems integration personnel are
accustomed to simple adapter implementations to satisfy the full-range of
integration needs for any given business system. Integration technologies
for SAP, Siebel or Peoplesoft ERP implementations, which manifest
themselves as “Adapters” satisfy all integration needs from within a single
adapter instance. The simple adapter metaphor is the expected paradigm
for integration of a single business system. When an integration project
needs access to a mainframe asset such as a CICS application or IDMS

Emergent Complexity in Mainframe Integration
Few people would admit to designing complexity into a computing
architecture from the very beginning. However, when presented with
the bald facts of most mainframe integration architectures, it would seem
at first blush that the pursuit of complexity must have featured high up
on the original design goal. There are some key reasons why mainframe
integration, more than most enterprise architectural disciplines, has a
tendency toward complexity.

Occam’s Razor Guide to Mainframe Integration 9

database, the expectation is for a low-cost, single-purpose adapter to
satisfy the needs of the project only. Depending on the procurement
processes within each organization it may be that the mainframe adapter,
to satisfy this particular business application, is acquired by the project
team itself. Even if it is considered a central services item, it is likely that
project ROI pressures will mean that a simple, single-purpose technology
is chosen that can satisfy only the needs of the project in question.

When you combine these two perspectives it is almost inevitable that
each organization’s mainframe integration technological landscape
resembles the quintessential spaghetti diagram (see below), with
incompatible, piecemeal solutions deployed to support each project as
a separate need.

The diagram is by no means as ridiculous as it may look. Most large
organizations, which have been asked to support individual project
requirements for mainframe integration, will have a set of technologies
deployed at least as varied and incompatible as the diagram suggests.
Such enterprise architecture puts tremendous hard and soft cost pressure on
IT and is unlikely to provide the service that the application teams expect.

Figure 1: Common mainframe integration implementation

Occam’s Razor Guide to Mainframe Integration 10

Taxonomy of Mainframe Integration
This section defines the higher-level requirements that should be set forth
in any charter for mainframe integration. It uses a well-established
categorization in order to make the options more accessible.

Mission-Critical Integration

Mainframe integration needs can be considered mission critical if the
applications they support have high-availability, high-volume, transactional
requirements – where a service interruption or data integrity issue costs
money in real time.

Informational Integration

Mainframe integration needs can be considered informational if the
applications they support are generally read-only in nature and exist
to support internal or planning-type applications – where a service
interruption should not impact revenue in real time in any way.

Mainframe Integration
Part of the challenge in approaching mainframe integration, as a
discipline all of its own, is to define what is meant by mainframe
integration. As has been stated already, most projects will look for
integration with DB2 or Adabas, or VSAM or CICS as separate
disciplines, when in reality they are all elements of the higher-level
discipline of mainframe integration.

Figure 2: Accepted categorization for mainframe integration

• Data replication
• J2EE applications
• Business activity monitoring
• Business process management

• Business intelligence
• .NET applications
• Integration Servers/Message brokers
• Event-driven systems

Typical
commercial
uses:

Standard
APIs

Mainframe Integration: Taxonomy

Occam’s Razor Guide to Mainframe Integration 11

Service-Oriented Architecture

Service-oriented architecture is the accepted industry model for
representing applications on the network as reusable services. Various
interface standards exist for these services. Such standards range from
DCE/RPC and CORBA, through database stored procedures to more
recently Web services. In all cases, requests are made of the services by
a calling application that expects some form of reply; consequently, such
architectures are often referred to as Request/Reply. A fundamental
element of a service-oriented implementation is the separation of interface
from implementation. This enables a looser coupling between the service
consumer and the service provider. The separation is enabled by means
of a metadata layer that makes the interface definition available at design
time to development professionals building consumer applications.

Event-Driven Architecture

Event-driven architecture is designed to support a more real-time method
of integrating application processes. Events occur throughout existing
applications. Events are largely defined by their meaning to the business
and granularity. For example, for some a database update may be a
meaningful event; for others the successful completion of an order process
may be an event. Regardless of the granularity of the event, event-driven
architecture concerns itself with ensuring that interested parties, usually
other applications, are notified immediately when the event completes.
This is in contrast to traditional methods of communicating such events,
which rely on “batching” events and communicating them periodically.
Other approaches have involved repeated Request/Reply activity against
certain database artifacts to detect changes. A successful event-driven
architecture can identify granular events, and enable administrators to
determine what level of event aggregation or context is required to convey
business meaning. It must also be driven using a “push” method of
communication rather than request/reply. An event-driven architecture
must also be able to publish events to multiple interested parties.

Requirements
The following section identifies the most common specific requirements
for integrating distributed computing environments with applications
and data resident on mainframes. Taken as a whole, it can be viewed
as the strategic set of needs for a mainframe integration solution. For
many organizations, however, each individual requirement is treated as
an integration requirement of its own. As pointed out before, such an
approach leads to a highly complex, fragmented and unresponsive
solution to the broad requirements for mainframe integration.

Service-Oriented Architecture

Web-to-Host

Web-to-Host is one of the most common, first-stage mainframe integration
initiatives undertaken. It benefits from being totally non-invasive insofar as
there is zero impact on the existing mainframe systems. The objective of

Occam’s Razor Guide to Mainframe Integration 12

Web-to-Host integration is merely to replace the black/green 3270
image of a mainframe application with a Web browser rendition of the
same screen. The benefits are presumed to include a more consistent
look-and-feel across all the users’ desktop applications as a result of the
elimination of 3270 emulation software. There is no change anticipated
in the usage profile of the mainframe application since a single 3270
interaction is replaced with a single browser-based interaction.

Aggregated Access to CICS, IMS/TM or IDMS Screens

Using a similar technology to Web-to-Host, aggregated access to
mainframe screens allows a screen navigation scenario to be
encapsulated within a single browser interaction. This is achieved by
having a 3270 scripting function navigate menus and fields in response to
a buffer of information sent from the browser. The benefits of such process
reengineering include a more streamlined and less keyboard intensive
experience for the user. Sophisticated examples of such aggregation also
include navigation from other mainframe systems. This results in the
delivery of entirely new business applications that fuse disparate
applications “at the glass.”

SQL Access to DB2 Data

SQL access is a very common requirement where the relational structures,
within the dominant mainframe relational database of DB2, are exposed
directly to Business Intelligence and application platform environments.
It is most commonly implemented for read-only purposes; however, an
increasing number of implementations are emerging that require update
access. Consequently, the issue of data-integrity is often raised. From a
technological perspective the means support for mainframe transactions,
controlled by z/OS Resource Recovery Services (RRS) and initiated from
XA compliant, two-phase commit capable transaction coordinators.

SQL Access to Non-Relational Data

In lieu of replicating non-relational databases to local relational or
mainframe resident DB2, an increasing number of organizations are
looking to provide direct relational access to non-relational mainframe
databases. The most common of which include IMS/DB, Adabas, IDMS
and VSAM. In order to achieve SQL access to non-relational data, the
non-relational structures need to be mapped into a relational form, and
metadata describing such mapping exposed to the composite application.
Again, in most cases this is read only due to the tight coupling of non-
relational implementations and the mainframe-resident applications that
drive them. However, there are a significant minority of needs that
embrace update activity. Such activity demands the same transactional
support identified above.

Transactional Access to CICS or IMS/TM Transactions

Perhaps the most common form of mainframe integration is new, mission-
critical eCommerce applications within application or integration servers,
which need to reuse business rules embedded with existing CICS or

Occam’s Razor Guide to Mainframe Integration 13

IMS/TM applications. These systems usually have high-volume,
high-availability needs and are almost always transactional in nature.

Web Services Access to Mainframe Applications

Web services hold out the promise of a more flexible way for applications
to interoperate. With so much invested in mainframe applications it is
hardly surprising that Web services access is being considered by many
organizations as a panacea for legacy reuse. The Web services
integration metaphor allows complex mainframe interface implementations
to be wrapped in a standard manner, which is compatible with most
non-mainframe development tooling.

Reuse of Legacy 4GL Applications

Many mainframe business applications still run within the popular 4GL
environments of Natural, ADS/Online, IDEAL and Mantis. These systems
were often bundled in with non-relational database systems popular
during the 1980s. For some organizations interaction with such systems is
an important way of leveraging legacy value.

Mainframe Access to Distributed Assets

With an increasing proliferation of applications and data resident on non-
mainframe environments, it is not surprising that mainframe applications
could benefit from access to such systems. Often referred to as “call-out,”
such requirements include mainframe applications synchronously calling
applications resident in J2EE or .Net application servers or making SQL
requests to remote Oracle or SQL/Server systems.

Event-Driven Architecture

Asynchronous Access to CICS or IMS/TM Applications

Asynchronous communication has emerged from its less-than-auspicious
beginnings as a successful and important mechanism for loosely coupling
applications that were never designed to interoperate in a synchronous
manner. Where mainframe systems are concerned, asynchronous access
is most commonly implemented in support of Business Process
Management (BPM) environments that implement workflows, which
imitate human interaction with various systems. In order to deliver a
similar transactional capability that a synchronously bound human
operator can provide, the common network transport for such interaction
is WebSphere/MQ. This ensures the BPM technology can handle positive
and negative acknowledgments, for asynchronously initiated mainframe
applications, in a timely and reliable manner.

Initiation of Mainframe Batch Processes

Certain batch processes are dependent upon the arrival of information
from other platforms. As integration needs shift in support of a more
real-time business environment, the need to initiate elements of the
batch process ahead of the overnight cycle becomes commonplace.
In conjunction with proliferation of BPM tools it is important to enable
off-mainframe event drive systems to trigger batch processes in the same
“on-demand” way online applications can be initiated (see above).

Occam’s Razor Guide to Mainframe Integration 14

Data Synchronization

Despite the utopian objective of having only a single live copy of any
data artifact, it is often desirable to take copies of the core systems of
record for Business Intelligence purposes or simply in support of a new
application for which practical, direct integration with the mainframe is
impossible. In such situations it is critical for the accurate operation of the
system, dependent upon the replicated copy of data, that the data itself
is kept synchronized with the system of record.

Event Triggering for Business Process Management (BPM) Systems

Perhaps the highest value form of event-driven architecture for mainframe
integration is the ability to trigger new-business processes, developed
with BPM tools, based on events occurring within mainframe systems.
Mainframes still run the majority of commercial applications;
consequently, considerable value can be unlocked from the operation
of such applications if the events they process are exposed to BPM
environments. Fairly significant technical barriers exist to achieving such
integration in a flexible manner. Few mainframe applications were
designed with such integration in mind; consequently, such triggering
requires code-modification in most cases. With availability of source
code uncertain for legacy applications, such modification is troublesome
and often impossible.

Common Approaches
Summarized here are the more common integration approaches to the
tasks identified above. None of the approaches identified below can
be considered a solution to the overarching challenge of mainframe
integration. Most solutions are deployed in support of a narrower
integration need such as 3270 screen scraping, programmatic integration
with CICS applications of SQL access to mainframe DB2 databases.
On completion of the section it is worth reflecting on just how many
technologies and vendors are required to satisfy the broader needs of
mainframe integration.

Service-Oriented Architecture

Web-to-Host

Rudimentary screen-scraping capability can be achieved with many
terminal emulation products; however, for reasons of deployment
efficiency, the function is more commonly achieved via a mid-tier
technology running within a Web server dedicated to the Web-to-Host
function. Such implementations also demand a dedicated server
environment with at least one hot-standby environment.

Aggregated Access to CICS, IMS/TM or IDMS Screens

Implemented in a similar way to the Web-to-Host systems, screen
aggregation solutions will have a separate server footprint and web
server environment. Resource demands are invariably higher than
Web-to-Host since simulated screen navigation, for applications with
high-user concurrency, can be resource intensive. Most production

Occam’s Razor Guide to Mainframe Integration 15

implementations will be running on clustered high-specification server
systems. Such integration technologies often provide a programmatically
callable API (commonly J2CA) to allow new applications to drive the
aggregated screen interactions.

SQL Access to DB2 Data

IBM’s DB2Connect product is the most widely implemented technology
to support SQL access to DB2. Low-volume, read-only requirements are
satisfied by DB2Connect personal edition; however, once a transaction
need is established, organizations have to implement the server-based
DB2Connect Enterprise Edition. This requires the implementation of a
high-performance server machine, with hot-standby or clustered machines
for failover and scalability requirements. In addition, for SQL access via
this Enterprise Edition gateway server, an ODBC or JDBC driver needs
to be installed and configured on the calling application platform.

SQL Access to Non-Relational Data

Two fundamental methods exist to satisfy this requirement. First, the data
is periodically replicated to either a mainframe-resident DB2 database,
or off-mainframe to a distributed Oracle or SQL/Server database. This
requires the installation of some Extract, Transformation and Load (ETL)
type technology that can access both the non-relational database and the
relational database, wherever it may reside. It also requires the installation
of JDBC or ODBC drivers to access the newly created, relational copy of
the non-relational data. Second, technology exists to query the non-
relational data in place by translating SQL calls into the native calling
syntax of the non-relational database. Such solutions often involve the
deployment of a server machine that intercepts SQL calls via a specific
ODBC or JDBC driver, and then passes an internal form of the request to
a mainframe resident series of address spaces to satisfy the SQL call.

Transactional Access to CICS or IMS/TM Transactions

IBM and a range of other vendors, including Microsoft, provide solutions
for this common requirement. Once again a gateway server, with
attendant clustering and failover, is required to translate requests from the
calling application platform into a form that can be handled by the CICS
or IMS/TM application. Such products are often sold at the departmental
level, and as a result it is common for an organization to have several
flavors of such a solution simultaneously active.

Web Services Access to Mainframe Applications

A relatively new integration approach, most current implementations are
extensions of screen-scraper products. However, direct Web services
access to the mainframe (without the cost and complexity of yet another
gateway machine) seems to be what the industry wants. IBM has its
CICS/SOAP toolkit which requires a commitment to transaction
modification. In addition there are several ISVs that have released
software that runs either natively on the mainframe or inside CICS.
This software can map SOAP requests dynamically to the format required
by the legacy transactions.

Occam’s Razor Guide to Mainframe Integration 16

Reuse of Legacy 4GL Applications

Most vendors of 4GLs offer some form of mainframe integration
technology designed specifically to integrate with the 4GL programs.
Examples include EntireX Broker from Software AG. Such products exploit
interfaces not normally visible to technologies that integrate with CICS in
the usual manner, as the 4GL interfaces are often hidden from standard
CICS interfaces. The popularity of these languages, and their enduring
value within large organizations, makes re-use attractive. Consequently, it
is likely that one of these mainframe integration technologies will find its
way into the software portfolio of companies with significant mainframe
4GL legacy systems.

Mainframe Access to Distributed Assets

Most current implementations of mainframe access to distributed
applications and data are “homegrown.” Often such implementations
involve modification to mainframe programs to call local network services.
A complimentary “catcher” program is also required on the remote
platform. Recently some vendors have begun implementing Web services-
oriented access from CICS to remote Web services using code “stubs”
inside CICS that generate SOAP calls to remote platforms automatically.

Event-Driven Architecture

Asynchronous Access to CICS or IMS/TM Applications

The WebSphere/MQ bridge for both CICS and IMS/TM provides a
convenient way for mainframe applications to be the receiving point for
an event-driven architecture. Messages received by the bridge are
mapped to CICS and IMS message-oriented applications. In practice the
mapping process is largely manual. Facilities exist within the bridge to
allow an organization to code its own mapping routines. Such code
needs to be sensitive to the location of fields that require data-type
conversion and must itself handle that conversion. Exploitation of the
bridge is therefore not a task to be undertaken lightly.

Initiation of Mainframe Batch Processes

Distributed job scheduling products can intercept requests from remote
systems and initiate mainframe batch processing suites. These products
typically reside on middle-tier servers and communicate with mainframe
resident counterparts. A more common approach is to use
WebSphere/MQ to trigger batch jobs. This is a more manual and
development-intensive process.

Data Synchronization

Over the years various data replication technologies, such as IBM Data
Propagator, have been employed to move copies of mainframe data onto
distributed platforms to make access to the data more efficient. ISVs have
also participated with products from companies such as Sybase and
Striva. The biggest headache with all implementations has been the
timeliness of keeping the copies synchronized. In virtually all scenarios,
changes to the source data are accumulated, batched and loaded into

Occam’s Razor Guide to Mainframe Integration 17

the remote system on a periodic basis. As business demands a more
real-time enterprise, with zero-latency for corporate information, this model
is tending toward obsolescence.

Event Triggering for Business Process Management (BPM) Systems

The most common way for mainframe applications to trigger processes
defined within BPM tools is to modify the application code to put
messages onto a WebSphere/MQ queue. This is a perfectly functional
solution but requires a commitment to the ongoing support and
maintenance of the modification. Furthermore, it does not provide a
flexible platform for event publishing. If the published message needs to
be enriched, further code modification and testing is required. Finally, as
event publishing to BPM tools demonstrates its true value, the business
groups will demand more complex event functionality. This will place an
enormous ongoing development burden on those responsible for
modifying the legacy applications.

Figure 3: Reprise of typical mainframe integration scenario diagram

Summary

Against the backdrop of the preceding discussion, the diagram (above)
becomes more meaningful. When the full range of technologies deployed
to support any interaction, which could be characterized as mainframe
integration, is assessed, the implementation complexity for most
companies is staggering.

Occam’s Razor Guide to Mainframe Integration 18

Application Development Perspective
In most situations when application development or systems integration
professionals working within a J2EE or .NET application platform
environment need access to applications or data on remote platforms,
those platforms manifest themselves to the application platform through a
single interface, commonly referred to as an adapter. The more types
and implementations of an adapter, the more complex it will be for an
application platform developer to build and test new applications. The
diagram in Figure 3 shows that treating mainframe integration as a
collection of unrelated challenges is almost guaranteed to force an
application platform developer to confront a range of differently
implemented Adapters to satisfy access to a single mainframe environment.

Metadata

For developers, who work within sophisticated integrated development
environments (IDEs), the ability to access metadata in a consistent manner
is fundamental to the smooth exploitation of remote data sources. Using
a collection of methods to integrate with mainframes will expose
metadata in an inconsistent manner. Furthermore, many mainframe
integration vendors offer specific extensions to common IDEs to make
manipulation of metadata easier. If a developer is faced with a different
IDE extension for each z/OS datasource type, metadata management
becomes more of a chore.

Transactions

A crucial point for any business-critical application is the management of
data integrity. For composite applications, data integrity is managed via
synchronous two-phase commit (2PC) transactions. 2PC is a complicated
mechanism that manages data integrity across multiple systems by relying
on support for transactions in the underlying system. Such transactional
support will routinely maintain locks for the duration of the transaction as
it traverses all the platforms within the transaction boundaries. For two
separate resources this is generally acceptable; however, as the number
of separate resources involved in the transaction grows beyond three, lock
durations grow geometrically. Such extended periods of locking can have
profound effects on concurrency. As we have seen, traditional mainframe
integration approaches treat different mainframe systems as separate
integration challenges. This has the potential to create a transactional
model with many separate resources to be coordinated on a single
mainframe image. Using 2PC to coordinate transactions across multiple

Composite Applications
While, from the perspective of the mainframe systems administrator, the
above catalog of solutions to the mainframe integration challenge may
be functionally satisfactory, it is worth looking at how the application
developer of the new composite applications is likely to exploit such
an architecture.

Occam’s Razor Guide to Mainframe Integration 19

mainframe resources, from the perspective of the application platform, is
likely to create significant lock duration issues. From the perspective of the
mainframe this may create an untenable concurrency issue as many of the
traditional workloads will be impacted.

Fortunately IBM has introduced a capability within the z/OS operating
system known as Resource Recovery Services (RRS) that can coordinate
updates across many mainframe systems using only a single commit
phase from the perspective of the composite application. This dramatically
improves concurrency; however, it can only be achieved if mainframe
integration is approached as a single challenge technologically rather
than a collection of unrelated disciplines. There are important
technological prerequisites that the mainframe integration software must
possess in order to allow the entire mainframe to be treated as a single
resource manager. It is a technical impossibility for such functionality to
be available if mainframe integration is spread across several disparate
mainframe integration tools.

Systems Administration Perspective
End-to-end visibility throughout the entire application life cycle is of
well-understood value in the J2EE and .NET development world. Many
integrated tools exist that allow programmers to rapidly develop, deploy,
test and manage composite applications. From the mainframe perspective
an equally bountiful range of tools can be found that display activity
against mainframe systems down to a fundamental level. For the most part
these two worlds do not intersect in any meaningful way from a systems
management perspective. Consequently, when the newly developed J2EE
or .NET transaction leaves the application platform on its way to the
mainframe, the developer or systems administrator must switch systems
management tools to ensure its activity can be tracked and, in the event
of a failure, diagnosed. Although most mainframe integration technologies
offer some form of additional systems management capability to plug the
gap between the transaction leaving the application platform and being
executed within the target mainframe subsystem, there is little default
integration between these tools and the various juxtaposed systems
management layers. Consequently, it is impossible for the J2EE or .NET
administrator to manage the end-to-end process, since the number of
tools to learn is bewildering.

Occam’s Razor Guide to Mainframe Integration 20

Occam’s Ideal Solution
A Single Product to Support all z/OS Subsystems

One solution is a single middleware product that provides integration with
CICS/TS (programs and screens), IMS/TM (programs and screens),
IDMS/DC (programs and screens), Natural programs, standard batch
programs, DB2, IMS/DB, VSAM, IDMS/DB, and Adabas, etc. Essentially,
this is a single product that addresses all mainframe data, program and
screen interface requirements.

A Single Product to Implement an Event-Driven Architecture and
Service-Oriented Architecture

This solution supports service-oriented architecture APIs such as J2CA,
JDBC, ODBC and Web services. It also supports event-driven architecture
by enabling mainframe events and data changes to be captured
non-invasively and published to an Enterprise Service Bus such as
WebSphere/MQ for consumption by a wide range of technologies such
as Business Process Management, Business Activity Monitoring or
Enterprise Application Integration. Support for both event-driven
architectures and service-oriented architectures should be described
internally by means of standards based metadata for maximum
interoperability with existing integrated development environments.

A Single Product to Handle Exposed Transactional Controls to
Distributed Applications

The solution supports both synchronous, two-phase commit and
asynchronous transactions within one product. The product should have the
ability to allow updates to any combination of z/OS resources, within a
single operating image, to be transactionally coordinated using a single-
phase transaction by the distributed platform. Asynchronous transaction
support is required to ensure the integrity of an event-driven architecture.

Occam’s Razor Applied to Mainframe Integration
Faced with common implementations of mainframe integration, William of
Occam would ask several key questions:

• Can the same function be achieved with fewer moving parts?
• Are so many middleware products required?
• Are so many vendors required?

Occam’s Razor Guide to Mainframe Integration 21

A Single Consistent Security Implementation

The idiosyncrasies of each mainframe subsystem security implementation
should manifest themselves in a consistent manner to the distributed
application platforms. In addition, a simple and consistent method of
exploiting non-mainframe authentication and auditing inside the
mainframe should be provided. This will ensure J2EE and .NET-based
applications do not introduce vulnerabilities as a result of having to learn
several different ways of bridging the security gap of the mainframe and
distributed world.

A Single Integrated Approach to End-to-End Systems Management

With a single product implementation for mainframe integration should
come a single interface to manage the transactions from the point they
touch the integration software to the point they are returned to the calling
application. In addition, an architectural awareness needs to enable
systems management tools, which monitor the J2EE and .NET application
platform, to query the instrumentation inside the mainframe integration
software. This provides the systems administrator with the opportunity to
visualize transactions from an end-to-end perspective within a single tool.

A Pricing Model That Enables Project-Oriented Purchases

While a single, all-embracing product for mainframe integration offers
significant benefits to any organization with considerable mainframe
workload, it cannot be burdened with a licensing model that prevents
small projects, with tight ROI constraints, from purchasing it.

Shadow – The Only Integrated Solution for All
Mainframe Integration Requirements
Shadow is the only integrated technology to deliver support for the entire
range of mainframe integration needs. With hundreds of the world’s
largest organizations running mission-critical applications, supporting in
many cases thousands of transactions per second, Shadow’s breadth of
functionality is matched only by its suitability for the most demanding of
mainframe integration scenarios.

Within a single technology, Shadow enables any distributed J2EE or
.NET application to exploit mainframe screens, programs and data in
a consistent manner using J2CA, JDBC, ODBC or Web services.
Additionally Shadow enables the non-invasive capture of mainframe
events from within any supported environment, with publishing of XML
representations of those events onto an Enterprise Service Bus such as
WebSphere/MQ. The entire environment is transactionally controlled to
ensure data integrity. In addition Shadow has a consistent and robust
security model which blends the best mainframe security with the
demands on distributed systems, to provide a vulnerability-free
integrated environment. Finally, the entire product is managed through
a single management console that presents an end-to-end view of

Occam’s Razor Guide to Mainframe Integration 22

transactions running between the mainframe and the application platform.
The instrumentation gathered by Shadow for systems management is
available and visible in popular J2EE systems management tools such as
Wily Enterprise.

Importantly, Shadow can be licensed on a project-by-project or
application-by-application basis. This ensures that organizations can
benefit from a single mainframe integration architecture without the barrier
of huge software licensing costs to contend with.

The Benefits of Simplicity
By implementing Shadow, organizations can begin to accrue the many
benefits associated with a simpler approach to mainframe integration.
Ultimately these benefits fall into the categories of the cost of complexity
outlined in an earlier section. For consistency the benefits are organized
below along the same lines.

Hard Costs

Software

Although Shadow itself carries a software license fee, it pales in
comparison to the fully burdened software license costs of the
combination of software required to provide the same range of
functionality. Looked at from the perspective of ongoing software
maintenance charges, Shadow can often prove to be a more cost-effective
solution than the collection of incumbent mainframe integration products.
Furthermore, Shadow can be licensed in a piecemeal fashion.

Figure 4: Shadow-integrated approach to mainframe integration

Occam’s Razor Guide to Mainframe Integration 23

Organizations can acquire Shadow on a project-by-project basis,
yet ultimately own a single unified architecture for all mainframe
integration needs.

Hardware

Shadow requires no additional hardware to function. Essentially, all the
costs associated with the deployment of hardware gateways can be
avoided. This represents a considerable hard-dollar cost savings for
organizations with even a moderately diverse mainframe integration
requirement. If the integration requirement has a mission-critical
dimension, the savings begin to grow exponentially as fail-over and
redundancy gateways can be avoided.

Soft Costs

Business Agility

A simpler, proven architecture can make the deployment of new business
applications, which have mainframe dependencies, a non-issue. This
allows project teams more time to focus on the real issue of building
high-value systems to support new business needs. Having to learn a
new integration tool for each new requirement introduces risk and friction
into composite application projects. This translates directly into costs to
the business as systems take longer to implement and may have
substandard systems management capability or exploitation.

Personnel

A single architecture for mainframe integration will require considerably
less configuration and administration personnel. Many organizations
maintain ratios of management staff to hardware and software
components. Eliminating unnecessary hardware and software platforms
will, if these ratios are honored, translate directly into savings. In addition
less personnel time will be spent deploying the application for reasons
alluded to above.

Availability

A simpler architecture should be far more reliable, particularly if the
systems management tooling can be used to diagnose the environment in
a holistic manner. Improved availability for mission-critical applications
translates directly into improved operational performance, which, depending
on the application, can have a profound impact on an organization’s
revenue-generating potential and general customer satisfaction.

Occam’s Razor Guide to Mainframe Integration 24

Summary
Mainframe integration demands a strategic approach if it is not to
become the weakest link in end-to-end integrated systems, which are
heavily dependent upon mainframe assets. However, the unique workload
mix of the mainframe, and the expectations of non-mainframe application
developers and systems integrators, push mainframe integration
architectures inexorably toward complex implementations. When the
range of integration needs is considered in a holistic fashion, rather than
as a group of unrelated application/subsystem pairs, it can be seen that
a practical, cost-effective and agile architecture is possible for what is
certainly the most important integration task for almost all large
organizations and government agencies.

The good news is that Shadow, from NEON Systems, has been
developed to provide a solution to the entire range of mainframe
integration needs from within a single product architecture. With
diagnostic integration to popular application platform systems
management tools, Shadow dramatically improves service availability
across the entire range of composite applications that depend on
mainframe assets. The cost savings from a strategic approach to such
a complex integration task can be huge. Furthermore, such an
implementation would certainly be considered consistent with Occam’s
Razor, and thus the greatest scientific minds of our era; for certainly
using Shadow it is possible “to do with fewer that which is done in vain
with more” (sic).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile ()
 /CalCMYKProfile (Japan Standard v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

