
Parsing, Syntax Checking and Interpreting

 User’s Guide

Version 2.0

November 13, 2012

Richard Tsujimoto, Inc.

Parsing, Syntax Checking and Interpreting – User’s Guide Richard Tsujimoto, Inc.

Approval

Version: 1.0

Date: June 7, 2004

Status: Draft

Copy no.: Uncontrolled

Prepared by Richard Tsujimoto

Reviewed by:

Approved by:

Approver’s name:

Approver’s title:

File Location

Revision History

Date Ver. Author Comments

12-21-2004 1.0 Richard Tsujimoto
Correct some typos, and add a section that
describes Statement Continuation

07-14-2005 2.0 Richard Tsujimoto

Add sections on new software for MVS that
are compatible with C-versions; also changes
where made to the C-versions to provide
compatibility with OS/390 V2 changes

07-25-2005 2.0 Richard Tsujimoto
Change parameters for @DELIM macro
from OFF to NO, and ON to YES

10-18-2005 2.0 Richard Tsujimoto
Add TOOGLE as delimiter state as a means
to tokenize blanks; default action is to not
tokenize blanks

12-19-2005 2.0 Richard Tsujimoto Add description for SYNTBLGEN

02-13-2006 2.0 Richard Tsujimoto Fix some erroneous, unclear statements

02-14-2006 2.0 Richard Tsujimoto Add section on building applications

11-07-2012 2.0 Richard Tsujimoto Add reference to Linux support

Printed: Nov. 13, 2012 Page 2

Parsing, Syntax Checking and Interpreting – User’s Guide Richard Tsujimoto, Inc.

Contents

1 INTRODUCTION 6

1.1 Latest changes..6

1.2 Reference Material...6

2 PARSING 7

2.1 What is Parsing?..7

2.2 Parsers..7

2.3 Tokenizing Data...7

2.3.1 Delimiters..8

2.3.2 Modifying the List of Delimiters..8

2.3.2.1 OS/390...8

2.3.2.2 Non-OS/390...9

2.4 Application Programming Interface..10

2.4.1 OS/390 10

2.4.2 Non-OS/390..10

2.5 Examples..10

2.5.1 OS/390 11

2.5.2 Non-OS/390..11

3 SYNTAX CHECKING 12

3.1 What is Syntax Checking?...12

3.2 Syntax Checkers..13

3.3 Grammar..13

3.3.1 Syntax rule format..13

3.4 Syntax table examples...14

3.4.1 OS/390 14

3.4.2 Non-OS/390..14

3.5 Statement continuation..14

3.5.1 OS/390 and Non-OS/390..15

3.6 Application Programming Interface..16

3.6.1 OS/390 16

3.6.2 Non-OS/390..16

3.7 Programming examples...17

3.7.1 OS/390 17

3.7.2 Non-OS/390..18

Printed: Nov. 13, 2012 Page 3

Parsing, Syntax Checking and Interpreting – User’s Guide Richard Tsujimoto, Inc.

3.8 Maintaining syntax tables for non-OS/390 platforms...18

3.8.1 DUMMYRULE..18

3.8.2 SYNTBLGEN...19

3.8.2.1 Command syntax for SYNTBLGEN...20

3.8.2.2 Example using SYNTBLGEN...20

4 INTERPRETING 22

4.1 What is interpreting?..22

4.2 Interpreters...22

4.3 Application Programming Interface..22

4.3.1 OS/390 22

4.3.2 Non-OS/390..23

4.4 User exits...23

4.4.1 OS/390 user exits..23

4.4.1.1 Syntax rule specifications..23

4.4.1.2 Calling the user exit...24

4.4.2 Non-OS/390 user exits..24

4.4.2.1 Syntax rule specifications..24

4.4.2.2 Calling the user exit...24

4.5 Programming examples...25

4.5.1 OS/390 25

4.5.2 Non-OS/390..26

5 INSTALLATION AND BUILD INSTRUCTIONS 28

5.1 Installation...28

5.2 Building the tools and sample programs...28

 APPENDIX A. DEFAULT DELIMITERS 29

 APPENDIX B. PARSE.H 30

 APPENDIX C. SYNTAXCHK.H 32

 APPENDIX D. INTERPRET.H 34

 APPENDIX E. OS/390 V2 TOKEN TYPES 35

Printed: Nov. 13, 2012 Page 4

Parsing, Syntax Checking and Interpreting – User’s Guide Richard Tsujimoto, Inc.

Table Of Figures
FIGURE 1: PARSING SOURCE CODE 7

FIGURE 2: EXAMPLE OF TOKEN STACK ENTRIES 8

FIGURE 3: MODIFIED DELIMITER LIST ON OS/390 9

FIGURE 4: MODIFIED DELIMITER LIST ON NON-OS/390 PLATFORMS.........9

FIGURE 5: OS/390 PARSER API 10

FIGURE 6: NON-OS/390 PARSER API 10

FIGURE 7: EXAMPLE OF PARSING ON OS/390 11

FIGURE 8: EXAMPLE OF PARSING ON NON-OS/390 PLATFORMS11

FIGURE 9: SYNTAX CHECKING SOURCE CODE 13

FIGURE 10: EXAMPLE OF AN OS./390 SYNTAX TABLE 14

FIGURE 11: EXAMPLE OF A NON-OS/390 SYNTAX TABLE 14

FIGURE 12: EXAMPLE OF SYNTAX RULES FOR STATEMENT
CONTINUATION ON NON-OS/390 PLATFORMS 15

FIGURE 13: OS/390 SYNTAX CHECKER API 16

FIGURE 14: NON-OS/390 SYNTAX CHECKER API 17

FIGURE 15: EXAMPLE OF SYNTAX CHECKING ON OS/390 17

FIGURE 16: EXAMPLE OF SYNTAX CHECKING ON NON-OS/390
PLATFORMS 18

FIGURE 17: USING DUMMYRULE TO RESERVE SPACE IN THE SYNTAX
TABLE 19

FIGURE 18: COMMAND SYNTAX FOR SYNTBLGEN 20

FIGURE 19: SAMPLE INPUT FILE FOR SYNTBLGEN 20

FIGURE 20: OUTPUT FILE GENERATED BY SYNTBLGEN 21

FIGURE 21: INTERPRETER SOURCE CODE 22

FIGURE 22: OS/390 INTERPRETER API 23

FIGURE 23: NON-OS/390 INTERPRETER API 23

FIGURE 24: EXAMPLE OF OS390 V2 USER EXIT 26

FIGURE 25: EXAMPLE OF NON-OS/390 USER EXIT 27

Printed: Nov. 13, 2012 Page 5

Parsing, Syntax Checking and Interpreting – User’s Guide Richard Tsujimoto, Inc.

1 Introduction
This document is a guide that describes the text processing tools that support parsing, syntax checking and
interpretation.

These tools support:

• A consistent method for “tokenizing data”

• A rules-based method for validating the data

• A simple means for extracting data

A separate section is devoted to each tool, and how it is implemented on various platforms.

The tools are available for the following platforms:

• OS/390
• AS/400
• Windows/2000/XP
• AIX
• HP-UX
• Linux1

Programming examples are provided, showing how to prepare the parameters/data structures that are
required by these tools, and how to invoke these services.

In addition, instructions on how to include these tools during the build of an executable are provided.

1.1 Latest changes
The tools for OS/390 now include software that is wholly compatible with the tools that exist for the
distributed platforms. This version of software for OS/390s referred to as Version 2 (V2), as is the software
for the distributed platform.

In addition, changes were also made to the C-version to incorporate some improvements made to the
OS/390 V2 software.

1.2 Reference Material
ESA/390 Principles of Operation, SA22-7201

HLASM V1R4 Language Reference, SC26-4940

HLASM V1R4 Programmer’s Guide, SC26-4941

ILE C for AS/400 Programmer’s Guide, SC09-2712

C: The Complete Reference, Herbert Schildt, Osborne McGraw-Hill

1 Red Hat on Intel 32-bit processor

Printed: Nov. 13, 2012 Page 6

Parsing, Syntax Checking and Interpreting – User’s Guide Richard Tsujimoto, Inc.

2 PARSING

2.1 What is Parsing?
One academic perspective of parsing is as follows:

“Parsing is the process of structuring a linear representation in accordance with a given
grammar. The definition has been kept abstract on purpose, to allow as wide an interpretation
as possible. The “linear representation” may be a sentence, a computer program, a knitting
pattern, a sequence of geological strata, a piece of music, actions in a ritual behaviour, in short
any linear sequence in which the preceding elements in some way restrict the next element.” –
Parsing Techniques, A Practical Guide by Dick Grune and Ceriel Jacobs

Rather than get into a lengthy discussion on grammar and linguistics, let it suffice to say that grammar is a
set of rules that describe a language. There are several ways to represent the set of rules. Compiler writers
create parse trees, which are an efficient data structure that supports the validation of complex expressions.
But, this level of complexity is beyond the needs for most software tools. A set of linear rules contained in
a table should be adequate, even if the functionality it supports is more limited than parse trees.

In order to structure “a linear expression in accordance with a given grammar”, the expression must be
broken down into its constituent parts, or tokens. The component that preprocesses linear expression, or
input characters, into tokens is called a lexical scanner. In this case, the parser is actually nothing more than
a lexical scanner. We use a simple a list of punctuation marks and other symbols, e.g. equal sign, which can
be used as delimiters, making it easy to extract the elements of the linear expression into tokens.

For example, in the sentence “the ticket costs $4.00”, the tokens could be: the, ticket, costs, $, and 4.00. In
most implementations, each white space is discarded, or ignored, as opposed to being converted into a
token.

The true functions of a parser are to “tokenize” the linear representation, and to validate the input against
grammar rules. In our implementation, this process is performed in two separate processes, which we call
parsing and syntax checking. The latter process is discussed in a separate section.

2.2 Parsers
The source code and include files (if applicable) for each platform are as follows:

Platform File
OS/390 RTI.MACLIB(@PARSE)

RTI.SOURCE(@PARSE)
RTI.SOURCE(T@PARSE)

Non-OS/3902 parse.h
parse.c
TestPARSE.c
dfltdelim.h

Figure 1: Parsing source code

2.3 Tokenizing Data

The process of tokenizing data is essentially the same across platforms. As the lexical scanning takes place,
an entry is stored on a First-in First-out (FIFO) queue for each token, where each entry contains the
following information (see Figure 2: Example of token stack entries).:

2 AIX, AS/400, HP-UX and Windows

Printed: Nov. 13, 2012 Page 7

Parsing, Syntax Checking and Interpreting – User’s Guide Richard Tsujimoto, Inc.

• Token identifier3 - this is a numeric value that represents the type of token. For example,
 if the expression is a string of characters, e.g. ABCD, it might be
 assigned 0, whereas if it were an equal sign, it might be assigned 3.

• Token length - this is the length of the expression, not including the trailing NULL for
 C strings.

• Location of the token - on OS/390, this would be an actual memory address, whereas on
 non-OS/390 platforms, this would be an offset into a character string.

Token ID Token Len. Token Loc.

0 4 1

3 1 5

1 3 6

ABCD=123

Figure 2: Example of token stack entries

2.3.1 Delimiters
The list of characters that constitute the set of valid delimiters can be modified by the calling application,
which gives the caller the ability to treat one, or more delimiters, as ordinary characters. For example,
periods are used as part of an OS/390 data set name. Therefore, it may be desirable to treat a period as part
of the data set name. If no changes are made, a default set of delimiters is used (see APPENDIX A. Default
Delimiters).

2.3.2 Modifying the List of Delimiters

2.3.2.1 OS/390
To modify the list of delimiters for OS/390:

 Code the @DELIM macro, specifying which special characters are to be treated as delimiters, as
opposed to ordinary data.

 By default, each special character is set to YES, e.g. treat the character as a delimiter. To have a
delimiter treated as data, specify NO.

 Optionally, the value TOGGLE can be specified. This is the same as YES, plus it serves as a means
to tokenize blanks on and off. For example, a user may want to treat embedded blanks as data,
such as a string that is enclosed in double quotes. In this particular case, the user would code
PTDQUOTE=TOGGLE. In effect, this would cause the first double quote to establish that any
subsequent blanks to be tokenized until another double quote is encountered.

3 The actual value assigned on OS/390 is different from that assigned on non-OS/390.

Printed: Nov. 13, 2012 Page 8

Parsing, Syntax Checking and Interpreting – User’s Guide Richard Tsujimoto, Inc.

DELIMTAB @DELIM MF=GEN, +
 PTDASH=NO, +
 PTUBAR=NO, +
 PTPOUND=NO, +
 PTSLASH=NO, +
 PTCOLON=NO, +
 .
 .
 .
 .

Figure 3: Modified delimiter list on OS/390

2.3.2.2 Non-OS/390
To modify the delimiter list for non-OS/390 platforms:

• Copy dfltdelim.h into your program

• Change the array name from dfltdelim to userdelim.

• By default, each special character is set to YES, e.g. treat the character as a delimiter. To have a
delimiter treated as data, specify NO.

• Optionally, the value TOGGLE can be specified. This is the same as YES, plus it serves as a means
to tokenize blanks on and off. For example, a user may want to treat embedded blanks as data,
such as a string that is enclosed in double quotes. In this particular case, the user would code
TOGGLE. In effect, this would cause the first double quote to establish that any subsequent blanks
to be tokenized until another double quote is encountered.

 char userdelim[33][2] = { /* User-defined delimiters */
 PTPAD,YES,
 PTCOMMA,YES,
 PTEQUAL,YES,
 PTLPAREN,YES,
 PTRPAREN,YES,
 PTLT,YES,
 PTGT,YES,
 PTLBRACE,YES,
 PTRBRACE,YES,
 PTDASH,YES,
 PTUBAR,YES,
 PTAND,YES,
 PTPOUND,NO,
 PTDQUOTE,TOGGLE,
 .
 .
 .
 }

Figure 4: Modified delimiter list on non-OS/390 platforms

Printed: Nov. 13, 2012 Page 9

Parsing, Syntax Checking and Interpreting – User’s Guide Richard Tsujimoto, Inc.

2.4 Application Programming Interface

2.4.1 OS/390
The API to invoke the V2 parser on OS/390 is an assembler macro.

&LABEL @PARSE &CMDLINE=, ADDRESS OF COMMAND LINE STRING +
 &CMDLEN=, LENGTH OF COMMAND LINE STRING +
 &DELIMTB=, ADDRESS OF DELIMITER ARRAY +
 &MF=, MACRO FORMAT +
 &DOC=NO DOCUMENTATION ONLY
Description
Mandatory input parameters: CMDLINE, CMDLEN, DELIMTB
Optional input parameters: DOC
Output parameters: n/a

Keyword Values
MF=DSECT Generate a DSECT of the calling parameter list
MF=L Generate the calling parameter list
MF=(E,reg) Generate the execute form of a program call
MF not coded Generate the inline form of a program call

Registers
R15 = 0 SUCCESS
 = 4 ADDRESS FOR COMMAND STRING IS ZERO
 = 8 STRING HAS INVALID LENGTH
 = 12 ADDRESS FOR DELIMITER ARRAY IS ZERO

Figure 5: OS/390 parser API

2.4.2 Non-OS/390
The API to invoke the parser on non-OS/390 platforms is a C function call. See APPENDIX B. parse.h for
additional information.

extern int parse(char cmdline[], /* String to be parsed */
 char delimiterlist[][2]); /* List of delimiters */

Description
Mandatory input parameters: cmdline
Optional input parameters: delimiterlist

Function return values
0 = Success
1 = One, or more, parameters is NULL
2 = cmdline has an invalid length

Figure 6: non-OS/390 parser API

2.5 Examples

Printed: Nov. 13, 2012 Page 10

Parsing, Syntax Checking and Interpreting – User’s Guide Richard Tsujimoto, Inc.

2.5.1 OS/390
The following example invokes the parser and passes a list of modified delimiters.

 @TOKEN MF=ALL
$PARSMAP @PARSE MF=DSECT
 .
 .
 LA R3,PARMLST1 POINT TO PARM LIST
 SPACE 1
 @PARSE MF=(E,R3)
 SPACE 1
 LTR R15,R15 OK ?
 BZ PARSE_CMD_EXIT YES, GET OUT
 .
 .
PARMLST1 @PARSE MF=L,CMDLINE=STRING,CMDLEN=L'STRING,DELIMTB=DELIMTAB
STRING DS CL80 INPUT STRING

Figure 7: Example of parsing on OS/390

2.5.2 Non-OS/390
The following example invokes the parser, passing a list of modified delimiters.

#include <parse.h>
 .
 .
main() {
 char inbuff[MAXSTRINGLEN+1];
 .
 .
 rc = parse(inbuff, userdelim);

 if (rc) { /* Error detected by Parser */
 printf(">>> Error detected by Parser. rc=%d\n", rc);
 return(ERROR);
 } /* end if */
} /* end main */

Figure 8: Example of parsing on non-OS/390 platforms

Printed: Nov. 13, 2012 Page 11

Parsing, Syntax Checking and Interpreting – User’s Guide Richard Tsujimoto, Inc.

3 Syntax Checking

3.1 What is Syntax Checking?
One definition of syntax checking that I came across is:

“A compiler will typically perform syntax checking, which includes type checks, scoping
rule enforcement, amongst other checks; and other processes such as static binding,
instantiation of templates, and optimization.” – Wikipedia

As you can see, the definition includes a of number tasks, beyond simply validating the syntactical
correctness of an expression. But, in our case, that is all we are interested in, i.e. syntax checking is simply
the application a grammar against a linear expression, or input characters. As mentioned earlier, in our
implementation, the two functions of a parser, lexical scanning and syntax checking, were divided into two
separate processes. The latter is discussed in this section.

Unlike a formal parser, our syntax checker:

• Does not construct or utilize parse trees

• Does not use recursion to find a matching syntax rule

• Does not convert the linear expression into a form suitable for expression analysis, e.g. Reverse
Polish Notation (RPN)

The complexity and development time required to implement the full functionality of a true parser are
beyond the requirements of most user applications. Hence, a simpler approach was taken.

Instead of using parse trees for validating the linear expression, we employed a simpler approach based on
linear rules, similar to a decision table.

Basically, the processing flow is as follows:

1. The current token is compared against a token type in the syntax table and,

2. If it matches, point to the next token in the FIFO queue and take the associated action, e.g.
“GOTO” the specified syntax table entry and repeat the process shown in Step 1

3. Otherwise, go to the next row in the table and repeat the process shown in Step 1

4. If the token type is SYNTAXERROR, the lookup process ends, the return code is set to a value that
indicates a syntax error and control is returned to the caller

5. Otherwise, the process (steps 1-3 above) are repeated until the input data is exhausted; in this case
a return code is set to indicate success and control is returned to the caller

Using a decision table-like mechanism is easy to implement, but it does not provide the capability needed
for an extensive grammar, e.g. programming language. Yet, this approach is more than adequate for the
development of software that uses a limited grammar, such as a small set of commands, or parameters that
are used in most user applications.

Printed: Nov. 13, 2012 Page 12

Parsing, Syntax Checking and Interpreting – User’s Guide Richard Tsujimoto, Inc.

3.2 Syntax Checkers
The source code and include files (if applicable) for each platform are as follows:

Platform File
OS/390 RTI.MACLIB(@SYNTXCK)

RTI.SOURCE(@SYNTXCK)
RTI.SOURCE(T@SYNTBL)
RTI.SOURCE(T@SYNTXC)
RTI.SOURCE(T@UEXITS)

Non-OS/390 syntaxchk.c
syntaxchk.h
syntblgen.c
syntblgen.h

Figure 9: Syntax checking source code

3.3 Grammar
The set of syntax rules, or grammar, is collectively referred to as the syntax table in this document. On
OS/390, this is a group of constants generated by the @RULE macro, which can be embedded as part of a
program, or created as a separate CSECT. On non-OS/390 platforms, the syntax table is represented by the
multiple instantiations of a C struct variable of type syntax_table within an array.

The declaration of the variable type syntax_table is in the file syntaxchk.h. See APPENDIX C.
syntaxchk.h for more details. In addition, the maximum number of syntax rules for non-OS/390 is 1000.
This is an arbitrary value, which can be expanded as needed. The user simply has to provide the additional
#define statements to define the values beyond 1000.

3.3.1 Syntax rule format
The format of a syntax rule is as follows:

label condition <action> <string> <user exit> <validation exit>

where:

label On OS/390 this is an assembler statement label, but on other platforms this is an index
value into the syntax table.

condition This is either a token type value, which is used to compare against the current token’s
type value, or it is a special value, e.g. it denotes the end of a linear expression, or the end
of a subset of rules. For details see APPENDIX C. syntaxchk.h and APPENDIX E.
OS/390 V2 Token types

<action> This is a “GOTO” instruction. On OS/390 it is an actual address of a grammar rule, but
on non-OS/390 platforms it is an index value into the array that represents the syntax
table. The file syntaxchk.h contains 1000 #define constants, e.g. GoTo00 –
GoTo999, which can be used to simplify the construction of rules. The pointer to the
current token is advanced to the next token before the “branch” is taken. This is an
optional parameter.

<string> If a string value is specified, it is used as a secondary comparison against the current
token, after the token type test is satisfied. This is an optional parameter. The maximum
length of a string is 100 characters.

Printed: Nov. 13, 2012 Page 13

Parsing, Syntax Checking and Interpreting – User’s Guide Richard Tsujimoto, Inc.

<user exit> This is the address of user routine that is called during the interpretation phase. This is an
optional parameter.

3.4 Syntax table examples
Using the grammar rules as described above, an example of a syntax table for each version and/or
environment is presented.

The examples are based on the following linear expression:

ABCD=123

and the string value assigned to the keyword ABCD is to be extracted by the user exit called MYEXIT.

3.4.1 OS/390

SYNTABLE @RULE TYPE=INITIAL
RULE010 @RULE TOK_IS_DATA,NEXT=RULE020,STRING=ABCD
 @RULE SYNTAXERR
RULE020 @RULE TOK_IS_EQUAL,NEXT=RULE030
 @RULE SYNTAXERR
RULE030 @RULE TOK_IS_NUM,NEXT=FLUSH,STRING=123,EXIT=MYEXIT
 @RULE SYNTAXERR
FLUSH @RULE TOK_IS_EOS,NEXT=DONE
 @RULE SYNTAXERR
DONE @RULE LASTRULE
 @RULE TYPE=FINAL

Figure 10: Example of an OS./390 syntax table

3.4.2 Non-OS/390

struct syntax_table syntaxtab[100] = { /* User syntax rules */
 /* rule-00 */ {STARTRULE},
 /* rule-01 */ {TokIsData, GoTo3, "ABCD"},
 /* rule-02 */ {SYNTAXERR},
 /* rule-03 */ {TokIsEqual, GoTo5},
 /* rule-04 */ {SYNTAXERR},
 /* rule-05 */ {TokIsNum, GoTo7, “123”, &MYEXIT},
 /* rule-06 */ {SYNTAXERR},
 /* rule-07 */ {TokIsEOS, GoTo9},
 /* rule-08 */ {SYNTAXERR},
 /* rule-09 */ {LASTRULE} };

Figure 11: Example of a non-OS/390 syntax table

3.5 Statement continuation
The continuations of input statements is a common practice when commands tend to have a complicated
syntax that may, or may not, involve long data values. Any token can be chosen as the continuation
character, such as a plus sign. A special token type value is provided (CONTRULE), which instructs the
syntax checker that the statement will be continued and that it should record where syntax checking is to
resume when the next input string is processed.

Printed: Nov. 13, 2012 Page 14

Parsing, Syntax Checking and Interpreting – User’s Guide Richard Tsujimoto, Inc.

3.5.1 OS/390 and Non-OS/390
The user tests for the presence of the character chosen for the statement continuation character. The
character can be any character that is valid for the given platform. Once a match has been made, a rule is
branched to that has the special keyword CONTRULE, followed by the statement where syntax checking is
to resume for next statement. Obviously, the placement and usage of a continuation character can be as
liberal as one chooses, but the trade-off is added complexity to the syntax rules.

Since the continuation rule uses the “GOTO” location associated with the <action> value for a future
purpose, e.g. the location of the syntax rule where syntax checking is to resume is stored, a mechanism is
required to control the logic flow after CONTRULE. Hence, a special token value is available that meets this
need, which is called GOTORULE. The purpose of this token type is to provide the “GOTO” capability that
was not provided for in the CONTRULE token type. This special token type must follow the CONTRULE
token type.

For example, the following statements show a command that supports two types of values, and calls
MYEXIT to extract the values:

ABCD = aaaa (where aaaa is any string other than HELP)
ABCD = HELP

If a plus sign (+) is used as a continuation character, there could be 2 places where it could be used
(assuming no blank statements are used):

ABCD +
 =
 +
 aaaa
 HELP

It should be pointed out that the degree of flexibility has a direct impact on the number of syntax rules
required to support that flexibility.

Since the example of the syntax table that demonstrates support for statement continuation for the above
expression is nearly identical for both OS/390 and non-OS/390 platforms, only the non-OS/390 example is
shown.

struct syntax_table syntaxtab[100] = { /* User syntax rules */
 /* rule-00 */ {STARTRULE},
 /* rule-01 */ {TokIsData, GoTo06, "ABCD"},
 /* rule-02 */ {SYNTAXERR},
 /* rule-03 */ {TokIsEOS, GoTo05},
 /* rule-04 */ {SYNTAXERR},
 /* rule-05 */ {LASTRULE},
 /* rule-06 */ {TokIsEqual, GoTo12},
 /* rule-07 */ {TokIsPlus, GoTo09},
 /* rule-08 */ {SYNTAXERR},
 /* rule-09 */ {CONTRULE, GoTo12},
 /* rule-10 */ {GOTORULE, GoTo03},
 /* rule-11 */ {SYNTAXERR},
 /* rule-12 */ {TokIsData, GoTo03, "HELP", &MYEXIT},
 /* rule-13 */ {TokIsData, GoTo03, NULL, &MYEXIT},
 /* rule-14 */ {SYNTAXERR} };

Figure 12: Example of syntax rules for Statement Continuation on non-OS/390 platforms

Printed: Nov. 13, 2012 Page 15

Parsing, Syntax Checking and Interpreting – User’s Guide Richard Tsujimoto, Inc.

3.6 Application Programming Interface
The following sections describe how to invoke the syntax checker, and the parameters that are required for
each version and/or environment.

3.6.1 OS/390
The API to invoke the syntax checker on OS/390 is an assembler macro.

&LABEL @SYNTXCK &SYNTXTB=, ADDRESS OF SYNTAX TABLE +
 &MF=, MACRO FORMAT +
 &DOC=NO DOCUMENTATION ONLY

Description
Mandatory input parameters: SYNTXTB
Optional input parameters: DOC
Output parameters: Address of token in error4

 Length of token in error
 Address of bad rule

Keyword Values
MF=DSECT Generate a DSECT of the calling parameter list
MF=L Generate the calling parameter list
MF=(E,reg) Generate the execute form of a program call
MF not coded Generate the inline form of a program call

Registers
R15 = 0 SUCCESS
 = 4 ADDRESS OF USER'S SYNTAX TABLE IS ZERO
 = 8 SYNTAX ERROR DETECTED
 = 12 NEXT RULE INDEX IS ZERO

Figure 13: OS/390 syntax checker API

3.6.2 Non-OS/390
The API to invoke the syntax checker on non-OS/390 platforms is a C function call. See APPENDIX C.
syntaxchk.h for additional information.

extern int syntaxchk(char cmdline[], /* String to be checked */
 struct syntax_table *syntaxtab, /* Syntax rules */
 int *tokenloc, /* Index value of bad token */
 int *tokenlen, /* Length of bad token */
 int *syntaxloc); /* Index of bad rule */

Description
Mandatory input parameters: cmdline, syntaxtab
Optional input parameters: n/a
Output parameters: tokenloc, tokenlen, syntaxloc

Function return values
0 = success

4 See DSECT of OS/390 calling parameter list

Printed: Nov. 13, 2012 Page 16

Parsing, Syntax Checking and Interpreting – User’s Guide Richard Tsujimoto, Inc.

2 = syntax error detected
3 = One, or more parameters is NULL
4 = “Next Rule” index is zero

5 = STARTRULE not found as first table entry5

Figure 14: non-OS/390 syntax checker API

3.7 Programming examples
The following examples will be based on syntax checking the following linear expression:

ABCD = 123

where, embedded spaces are allowed, and a user exit called MYEXIT is to be called during the interpretation
phase to process the assigned data.

It is assumed that the parser successfully processed the input characters in an earlier step.

3.7.1 OS/390

 @TOKEN MF=ALL
$PARSMAP @PARSE MF=DSECT
$SYNTMAP @SYNTXCK MF=DSECT
 .
 .
 LA R3,PARMLST2 POINT TO @SYNTXCK PARM LIST
 LA R5,SYNTABLE POINT TO SYNTAX TABLE
 SPACE 1
 @SYNTXCK MF=(E,R3),SYNTXTB=(R5)
 SPACE 1
 LTR R15,R15 ANY ERRORS?
 BZ CHK_SYNTAX_EXIT NO, GET OUT
 .
 .
PARMLST2 @SYNTXCK MF=L
 .
 .
SYNTABLE @RULE TYPE=INITIAL,EXITLOC=LOCAL
RULE010 @RULE TOK_IS_DATA,NEXT=RULE020,STRING=ABCD
 @RULE SYNTAXERR
RULE020 @RULE TOK_IS_EQUAL,NEXT=RULE030
 @RULE SYNTAXERR
RULE030 @RULE TOK_IS_DATA,NEXT=FLUSH,EXIT=MYEXIT
 @RULE SYNTAXERR
FLUSH @RULE TOK_IS_EOS,NEXT=DONE
 @RULE SYNTAXERR
DONE @RULE LASTRULE
 @RULE TYPE=FINAL

Figure 15: Example of syntax checking on OS/390

5 STARTRULE is used to occupy the first element in the syntax table, which is an array in C. This prevents
using array position zero as a valid “GOTO” location. This is not an issue on OS/390.

Printed: Nov. 13, 2012 Page 17

Parsing, Syntax Checking and Interpreting – User’s Guide Richard Tsujimoto, Inc.

3.7.2 Non-OS/390

#include <parse.h>
#include <syntaxchk.h>
extern int MYEXIT(char token[], int tokenlen);

main()
{
 char inbuff[MAXSTRINGLEN+1];
 int toklen;
 int tokloc;

 struct syntax_table syntaxtab[100] = { /* User syntax rules */
 /* rule-00 */ {STARTRULE},
 /* rule-01 */ {TokIsData, GoTo03, "ABCD"},
 /* rule-02 */ {SYNTAXERR},
 /* rule-03 */ {TokIsEqual, GoTo05},
 /* rule-04 */ {SYNTAXERR},
 /* rule-05 */ {TokIsNum, GoTo07, NULL, &MYEXIT},
 /* rule-06 */ {SYNTAXERR},
 /* rule-07 */ {TokIsEOS, GoTo09},
 /* rule-08 */ {SYNTAXERR},
 /* rule-09 */ {LASTRULE} };
 .
 .
 rc = syntaxchk(inbuff, syntaxtab, &tokloc, &toklen);

 if (rc) { /* syntax error found */
 printf(">>> Syntax error in column %d token length = %d\n",
 tokloc + 1, toklen);
 } /* end if */
 .
 .

Figure 16: Example of syntax checking on non-OS/390 platforms

3.8 Maintaining syntax tables for non-OS/390 platforms
The major difference between the specification of syntax rules between OS/390 and non-OS/390
environments is the use of a macro language on OS/390 vs. using an array in a C program. The macro
language allows one to specify labels, which are treated as relocatable symbols. Hence, if the syntax rules
need changes, it becomes a trivial task with respect to editing source code. But, in the case of C programs,
since each rule is, in effect, an entry in an array, the impact to the relationship between array locations and
“GoTo” statements is significant. For example, the insertion of a single rule in an array, other than at the
end of the array, affects the relative location of each array entry from that point on, and on any rule that
references the affected entries via a “GoTo” statement. Obviously, the effort to maintain a syntax table in a
C program could potentially outweigh the benefits of using the in-house tools.

As a means to alleviate the effort of maintaining a syntax table in a C program, two options are presented.

3.8.1 DUMMYRULE
A special token type called DUMMYRULE is available, which is used to reserve space in the event of future
changes. Since entries in C struct variables are non-relocatable, reserving space minimizes the impact of

Printed: Nov. 13, 2012 Page 18

Parsing, Syntax Checking and Interpreting – User’s Guide Richard Tsujimoto, Inc.

making changes later on. This approach may be desirable if the syntax table is small, and not prone to
changes.

The following example shows the same syntax rules used in prior examples, except for a few
DUMMYRULE’s. Note that the “GoTo” statements had to be modified, so that the offset is referenced.

extern int MYEXIT(char token[], int tokenlen);

main()
{
 char inbuff[MAXSTRINGLEN+1];
 int toklen;
 int tokloc;

 struct syntax_table syntaxtab[100] = { /* User syntax rules */
 /* rule-00 */ {STARTRULE},
 /* rule-01 */ {TokIsData, GoTo04, "ABCD"},
 /* rule-02 */ {SYNTAXERR},
 /* rule-03 */ {DUMMYRULE},
 /* rule-04 */ {TokIsEqual, GoTo07},
 /* rule-05 */ {SYNTAXERR},
 /* rule-06 */ {DUMMYRULE},
 /* rule-07 */ {TokIsNum, GoTo09, NULL, &MYEXIT},
 /* rule-08 */ {SYNTAXERR},
 /* rule-09 */ {TokIsEOS, GoTo11},
 /* rule-10 */ {SYNTAXERR},
 /* rule-11 */ {LASTRULE} };
 .
 .
 rc = syntaxchk(inbuff, syntaxtab, &tokloc, &toklen);

 if (rc) { /* syntax error found */
 printf(">>> Syntax error in column %d token length = %d\n",
 tokloc + 1, toklen);
 } /* end if */
 .
 .

Figure 17: Using DUMMYRULE to reserve space in the syntax table

3.8.2 SYNTBLGEN
The second option that can be used to maintain syntax tables for C programs is to use another in-house tool
called SYNTBLGEN. This tool is a C program that converts a macro-like source file into a file that contains
an array, which has the user-specified syntax rules. As a result, the programmer does not have to worry
about maintaining the relationship between specific array entries and “GoTo” statements.

The macro-like source is based on the macro statements used in the OS/390 environment. In effect, if the
same rules are used on OS/390 and other non-OS/390 platforms, a single set of rules could be maintained on
OS/390 itself, with a few minor changes.

The differences between the macro language used on OS/390 and non-OS/390 are as follows:

• The first rule must be @RULE TYPE=INITIAL without any other parameters

Printed: Nov. 13, 2012 Page 19

Parsing, Syntax Checking and Interpreting – User’s Guide Richard Tsujimoto, Inc.

• OS/390-specific token types are not supported, e.g. TOK_IS_NOT (the not sign).

• The parameter COMMENT=”…” is only supported for non-OS/390. This parameter provides a way
for a programmer to specify a comment for a rule that is also generated as a comment for an array
element.

3.8.2.1 Command syntax for SYNTBLGEN

syntblgen –i infile –o outfile

where infile is the input source file that contains the macro statements
 outfile is the output file that contains the C array statements

Figure 18: Command syntax for SYNTBLGEN

3.8.2.2 Example using SYNTBLGEN
The following examples show the macro statements that are used to define the same set of syntax rules, as
in the prior examples, and the generated C arrays statements.

SYNTABLE @RULE TYPE=INITIAL
RULE010 @RULE TOK_IS_DATA,NEXT=RULE020,STRING=ABCD, +
 COMMENT=”Start: process ABCD”
 @RULE SYNTAXERR
RULE020 @RULE TOK_IS_EQUAL,NEXT=RULE030
 @RULE SYNTAXERR
RULE030 @RULE TOK_IS_DATA,NEXT=FLUSH,EXIT=MYEXIT
 @RULE SYNTAXERR,COMMENT=”End: process ABCD”
FLUSH @RULE TOK_IS_EOS,NEXT=DONE
 @RULE SYNTAXERR
DONE @RULE LASTRULE
 @RULE TYPE=FINAL

Figure 19: Sample input file for SYNTBLGEN

The above example is a copy of the macro statements taken from the OS/390 example, with the following
changes:

• The @RULE TYPE=INITIAL statement does not have the EXITLOC=LOCAL parameter

• COMMENT=”…” parameters has been added.

• A plus sign (+) has been added, which is used to denote a continuation statement.

struct syntax_table syntaxtab[MAX_RULES] = { /* Syntax rules */
 /* rule-0000 */ {STARTRULE},
 /* rule-0001 */ {TokIsData, GoTo3, "ABCD"}, /* Start: process ABCD */
 /* rule-0002 */ {SYNTAXERR},
 /* rule-0003 */ {TokIsEqual, GoTo5},

Printed: Nov. 13, 2012 Page 20

Parsing, Syntax Checking and Interpreting – User’s Guide Richard Tsujimoto, Inc.

 /* rule-0004 */ {SYNTAXERR},
 /* rule-0005 */ {TokIsData, GoTo7, NULL, &MYEXIT},
 /* rule-0006 */ {SYNTAXERR}, /* End: process ABCD */
 /* rule-0007 */ {TokIsEOS, GoTo9},
 /* rule-0008 */ {SYNTAXERR},
 /* rule-0009 */ {LASTRULE},
}; /* end of syntax table */

Figure 20: Output file generated by SYNTBLGEN

The above example shows the result of using SYNTBLGEN6. Note that MAX_RULES has been inserted as
the size of the array. MAX_RULES is a #define variable set to 1000. The programmer can change this
to a smaller value, if necessary.

6 The lines were shifted left so that the comment lines are not split across two lines. This was to make the
example more readable for this document. In a real C program, this would not be an issue.

Printed: Nov. 13, 2012 Page 21

Parsing, Syntax Checking and Interpreting – User’s Guide Richard Tsujimoto, Inc.

4 Interpreting

4.1 What is interpreting?
The explanation of this term could be derived from the understanding of what an interpreter does.

“A program that executes instructions written in a high-level language. There are two ways
to run programs written in a high-level language. The most common is to compile the
program; the other method is to pass the program through an interpreter.

An interpreter translates high-level instructions into an intermediate form, which it then
executes. In contrast, a compiler translates high-level instructions directly into machine
language.” – Wikipedia

An example of an interpreter is the BASIC language, which is widely known as an interpretive language7.

But, in our particular case, interpreting is a process that is designed to provide a means for giving the
application access to tokens once the linear expression has been tokenized and checked for syntactical
correctness. Unlike a formal interpreter, the linear expression is not stored in an intermediate form. But the
syntax rules that pertain to that linear expression can be viewed as the intermediate format of the linear
expression itself.

The same grammar that was used as input to the syntax checker is also used as input to the interpreter. But,
unlike the syntax checker, the interpreter uses the syntax rules for the linear expression as instructions to be
processed, or followed, looking for rules that contain requests to invoke user exits. The location and length
of the token are then passed to the user exit which, after local processing, returns control to the interpreter,
indicating if it had encountered any context-related errors. For example, the interpreter passes a value of
100 to the user exit, but the user exit discovers that value exceeds the maximum allowed for the token.

4.2 Interpreters
The source code and include files (if applicable) for each platform are as follows:

Host File
OS/390 RTI.MACLIB(@INTRPTR)

RTI.SOURCE(@INTRPTR)
Non-OS/390 interpret.h

interpret.c

Figure 21: Interpreter source code

4.3 Application Programming Interface

4.3.1 OS/390
The API to invoke the interpreter on OS/390 is an assembler macro.

&LABEL @INTRPRT &SYNTXTB=, ADDRESS OF USER'S SYNTAX TABLE +
 &ERRMSG=, ADDRESS OF 100-BYTE MESSAGE BUFFER +
 &MF=, MACRO FORMAT +
 &DOC=NO DOCUMENTATION ONLY

Description
Mandatory input parameters: SYNTXTB

7 Some implementations of BASIC languages have the option of being compiled as well as interpreted.

Printed: Nov. 13, 2012 Page 22

Parsing, Syntax Checking and Interpreting – User’s Guide Richard Tsujimoto, Inc.

Optional input parameters: DOC
Output parameters: ERRMSG

Registers
R15 = 0 - SUCCESS
 4 - ADDR OF USER'S SYNTAX TABLE IS ZERO, OR
 ADDR OF USER'S MESSAGE BUFFER IS ZERO
 8 - ERROR DETECTED BY USER'S EXIT

Figure 22: OS/390 interpreter API

4.3.2 Non-OS/390
The API to invoke the interpreter on non-OS/390 platforms is a C function call. See APPENDIX D.
interpret.h for additional information.

extern int interpret(char cmdline[], /* String to be interpreted */
 struct syntax_table *syntaxtab); /* Syntax rules */

Description
Mandatory input parameters: cmdline, syntaxtab
Optional input parameters: n/a
Output parameters: n/a

Function return values
0 success

 1 context error detected by user exit
 2 Parameter is null

Figure 23: non-OS/390 interpreter API

4.4 User exits
User exits are subroutines that are invoked when the linear expression is passed through the syntax table and
the interpreter encounters a user exit specification for a given syntax rule. This provides the means by
which the user code can access data from a linear expression and process it.

4.4.1 OS/390 user exits

4.4.1.1 Syntax rule specifications
The exits can be specified on any syntax rule, except for:

@RULE TYPE=INITIAL
@RULE TYPE=FINAL

The format for specifying user exits on a syntax rule is as follows:

@RULE TYPE=token_type,NEXT=label[,STRING=s…s],EXIT=e…e

where e…e is the subroutine’s name. The address constant that is generated in the syntax table is either an
ACON, or a VCON, is determined by the @RULE TYPE=INITIAL macro:

@RULE TYPE=INITIAL,EXITLOC=LOCAL generates ACONs (this is the default), and

Printed: Nov. 13, 2012 Page 23

Parsing, Syntax Checking and Interpreting – User’s Guide Richard Tsujimoto, Inc.

@RULE TYPE=INITIAL,EXITLOC=EXTERNAL generates VCONs

Note, if the user exit is part of a separate CSECT, but is not the main entry point, then an ENTRY e…e
assembler statement must be specified in that CSECT.

For an example, see Figure 10: Example of an OS./390 syntax table.

4.4.1.2 Calling the user exit
When the interpreter encounters a user exit specification in a syntax rule, it branches to the user exit,
passing a parameter list via register 1.

Register 1 points to the following 3-word parameter list:

Address of the token
Length of the token
Address of a 100 byte message buffer

The message buffer is provided to the user exit in the event it chooses to store an informational/error
message.

The user exit signifies if its processing is to be regarded as successful, or not, by setting register 15 to 0
(success), or 8 (error).

4.4.2 Non-OS/390 user exits

4.4.2.1 Syntax rule specifications
The exits can be specified on any syntax rule, except for:

STARTRULE

The format for specifying user exits on a syntax rule is as follows:

TokenType, GoToxx [, “s…s”], &e…e
 [, NULL]

where s…s is a string value and e…e is the name of the user exit. And, in the case where there is no string
to compare, NULL serves as a placeholder and ensures that an empty string pointer is to be generated in the
syntax table.

For an example, see Figure 11: Example of a non-OS/390 syntax table.

4.4.2.2 Calling the user exit
User exit names must be defined by specifying an external function prototype statement for the user exit.

For example:

extern int MYEXIT(char token[], int tokenlen, char *errmsg);

When the interpreter encounters a user exit specification in a syntax rule, it invokes the user exit, passing
string pointers to the token and a 100-byte message buffer (not including the null terminator), and an integer
value that reflects the length of the token (again, not including the null terminator).

Printed: Nov. 13, 2012 Page 24

Parsing, Syntax Checking and Interpreting – User’s Guide Richard Tsujimoto, Inc.

The message buffer is provided to the user exit in the event it chooses to store an informational/error
message.

The user exit signifies if its processing is to be regarded as successful, or not, by setting the parameter in the
return() function to 0 (success), or 1 (error).

4.5 Programming examples
The following examples show how to invoke the interpreter, along with a simple user exit. The code that
invokes the parser and syntax checker is also included for readability sake. In addition, the syntax tables are
not shown, but it can be assumed that the tables being used are the same one as ones described in the section
Syntax table examples.

4.5.1 OS/390

#PARSMAP @PARSE MF=DSECT
#SYNTMAP @SYNTXCK MF=DSECT
#INTRMAP @INTRPRT MF=DSECT
#EXITMAP @INTRPRT MF=EXITPARM
 @TOKEN MF=ALL
 .
 .
 LA R3,PARMLST1 POINT TO PARM LIST
 SPACE 1
 @PARSE MF=(E,R3)
 SPACE 1
 LTR R15,R15 OK?
 BNZ PARSE_CMD_ERR NO, CONTINUE
 SPACE 1
 LA R3,PARMLST2 POINT TO @SYNTXCK PARM LIST
 LA R5,SYNTABLE POINT TO SYNTAX TABLE
 SPACE 1
 @SYNTXCK MF=(E,R3),SYNTXTB=(R5)
 SPACE 1
 LTR R15,R15 ANY ERRORS?
 BNZ SYNTAX_ERR YES, CONTINUE
 SPACE 1
 LA R3,PARMLST3 POINT TO @INTRPRT PARM LIST
 LA R5,SYNTABLE POINT TO SYNTAX TABLE
 SPACE 1
 @INTRPRT MF=(E,R3),SYNTXTB=(R5)
 SPACE 1
 LTR R15,R15 ANY ERROR?
 BZ CHK_INTRPRT_EXIT NO, GET OUT
 .
 .
PARMLST1 @PARSE MF=L,CMDLINE=INBUFF,CMDLEN=L'INBUFF,DELIMTB=DELIMTAB
PARMLST2 @SYNTXCK MF=L
PARMLST3 @INTRPRT MF=L,ERRMSG=IERRMSG
INBUFF DS CL80 INPUT BUFFER
 .
 .
MYEXIT DS 0H
 PUSH USING
 SAVE (14,12) SAVE CALLER'S REGS

Printed: Nov. 13, 2012 Page 25

Parsing, Syntax Checking and Interpreting – User’s Guide Richard Tsujimoto, Inc.

 SPACE 1
 LR BASEREG,R15 PRIME BASE REG
 USING MYEXIT,BASEREG SET ADDR
 SPACE 1
 ST R13,SUBSAVE+4 SAVE PTR TO CALLER'S REG. SAVE AREA
 LA R13,SUBSAVE PRIME SAVE AREA PTR
 LR R7,R1 PARM ADDR
 USING #EXITMAP,R7 SET ADDR
 SPACE 1
 CLC NUM123,=CL3' ' DUPLICATE?
 BNE ITSADUP YES, CONTINUE
 SPACE 1
 L R2,@IXTOKAD ADDR OF TOKEN
 L R4,@IXTOKLN TOKEN LENGTH
 BCTR R4,R0 MACHINE LENGTH
 EX R4,COPY123 COPY IT
 XR R15,R15 SET GOOD RC
 B EXIT GET OUT
 SPACE 1
ITSADUP DS 0H
 L R2,@IXERRMG ADDR OF MESSAGE BUFFER
 MVC 0(L'DUPMSG,R2),DUPMSG STORE MESSAGE
 LA R15,8 SET BAD RC
 SPACE 1
EXIT DS 0H
 L R13,SUBSAVE+4 PT TO CALLER'S REG SAVEAREA
 SPACE 1
 RETURN (14,12),RC=(15) GO BACK TO @INTRPRT
 SPACE 1
NUM123 DC CL3' ' 123
DUPMSG DC C'>>> DUPLICATE 123 <<<'
 SPACE 1
 DROP R7
 POP USING

Figure 24: Example of OS390 V2 user exit

4.5.2 Non-OS/390

#include <parse.h>
#include <syntaxchk.h>
#include <interpret.h>

extern int MYEXIT(char token[], int tokenlen, char *errmsg);

char num123[4] = “ “;

main()
{
 char inbuff[MAXSTRINGLEN+1];
 int toklen;
 int tokloc;
 .
 .
 rc = parse(inbuff, userdelim);

Printed: Nov. 13, 2012 Page 26

Parsing, Syntax Checking and Interpreting – User’s Guide Richard Tsujimoto, Inc.

 if (rc) { /* Error detected by Parser */
 pritnf(“>>> Error detected by Parser, rc=&d\n”, rc);
 return(ERROR);
 } /* end if */

 rc = syntaxchk(inbuff, syntaxtab, &tokloc, &toklen);

 if (rc) { /* syntax error found */
 printf(">>> Syntax error in column %d token length = %d\n",
 tokloc + 1, toklen);
 return(ERROR);
 } /* end if */

 rc = interpret(inbuff, syntaxtab);

 if (rc) { /* context error encountered */
 printf("+++ rc returned by interpret = %d\n", rc);
 return(ERROR);
 } /* end if */
 .
 .
int MYEXIT(char token[], int tokenlen, char *errmsg)
{
 int i;

 for (i = 0; i < tokenlen; i++) {
 if (num123[i] != ‘ ‘) {
 strcat(errmsg, “>>> DUPLICATE 123 <<<”;
 return(ERROR);
 } /* end if */
 } /* end for */

 return(SUCCESS);

} /* end of MYEXIT */

} /* end main */

Figure 25: Example of non-OS/390 user exit

Printed: Nov. 13, 2012 Page 27

Parsing, Syntax Checking and Interpreting – User’s Guide Richard Tsujimoto, Inc.

5 Installation and build instructions
This section describes how to build the tools and sample programs, and how to include these tools in an
application.

NOTE: due to problems detected in the packaging of these tools by NaSPA, the CBT tape should not be
used. Instead the packaging has been redone and is available on a CD which can be obtained by contacting
the author by sending an email to:

rtsujimoto@nyc.rr.com

5.1 Installation
Follow the installation instructions on the author-supplied CD

5.2 Building the tools and sample programs
The platform-specific readme file also describes how to build the tools and sample programs.

Printed: Nov. 13, 2012 Page 28

Parsing, Syntax Checking and Interpreting – User’s Guide Richard Tsujimoto, Inc.

APPENDIX A. Default Delimiters

Delimiter Name Comments
Space

, Comma
= Equal sign
(Left parenthesis
) Right parenthesis
< Left angle bracket
> Right angle bracket
{ Left brace
} Right brace
- Dash
_ Under-bar
& Ampersand
Pound sign
@ At sign
+ Plus sign
/ Slash
* Asterisk
; Semi-colon
: Colon
‘ Single-quote
“ Double-quote
¬ Not-equal OS/390 only
~ Tilde
| Bar
? Question mark
. Period
! Exclamation point
¢ Cent sign OS/390 only
\ Back slash
$ Dollar sign
¦ Split bar OS/390 only
` Reverse quote
[Left bracket Non-OS/390 only
] Right bracket Non-OS/390 only

Printed: Nov. 13, 2012 Page 29

Parsing, Syntax Checking and Interpreting – User’s Guide Richard Tsujimoto, Inc.

APPENDIX B. parse.h

/*****************************Documentation Start******************************

 NAME: parse.h - Header file for parser.c and user code that invokes parser.c

 DESCRIPTION:

 This file contains definitions used by parser.c, and callers of parser.c

 NOTE: parser.c must specify #define PARSE 1 to ensure the global variables it
 uses are exposed.

 HISTORY:

 Date Who Description
 ----------- --- --
 2004-Jun-01 RXT Created
 2005-Jul-08 RXT Add specific return codes for each error type

******************************Documentation End********************************/

#define PARSE_PARM_IS_NULL 1
#define PARSE_STRING_LEN_INVALID 2

#define YES 'Y'
#define NO 'N'
#define TOGGLE 'T'
#define TOGGLE_ON 1
#define DEFAULT_DELIMS dfltdelim
#define MAXSTRINGLEN 100
#define MAX_KEYWORD_LEN 100

#define PTDATA 100
#define PTNUM 101
#define PEOS 255
#define PTNULL '\0'
#define PTPAD ' '
#define PTCOMMA ','
#define PTEQUAL '='
#define PTLPAREN '('
#define PTRPAREN ')'
#define PTLT '<'
#define PTGT '>'
#define PTLBRACE '{'
#define PTRBRACE '}'
#define PTDASH '-'
#define PTUBAR '_'
#define PTAND '&'
#define PTPOUND '#'
#define PTAT '@'
#define PTPLUS '+'
#define PTSLASH '/'
#define PTPERCENT '%'
#define PTSTAR '*'
#define PTSCOLON ';'
#define PTCOLON ':'
#define PTSQUOTE '\''

Printed: Nov. 13, 2012 Page 30

Parsing, Syntax Checking and Interpreting – User’s Guide Richard Tsujimoto, Inc.

#define PTDQUOTE '"'
#define PTTILDE '~'
#define PTBAR '|'
#define PTQUEST '?'
#define PTPERIOD '.'
#define PTEXCLAM '!'
#define PTBSLASH '\\'
#define PTDOLLAR '$'
#define PTRVQUOT '`'
#define PTLBRACKET '['
#define PTRBRACKET ']'

#if PARSE != 1
extern char dfltdelim[33][2];

extern struct parsework { /* Stack of parsed tokens */
 int tokentype; /* token type flag */
 int tokenlen; /* token length */
 int tokenloc; /* token offset in string */
} tokenstack[MAXSTRINGLEN+1];
#endif

extern int parse(char cmdline[], /* String to be parsed */
 char delimiterlist[][2]); /* List of delimiters */

Printed: Nov. 13, 2012 Page 31

Parsing, Syntax Checking and Interpreting – User’s Guide Richard Tsujimoto, Inc.

APPENDIX C. syntaxchk.h

/*************************Documentation Start***********************************

 NAME: syntaxchk.h - Header file for syntaxchk.c and user code that invokes
 syntaxchk.c

 DESCRIPTION:

 This file contains definitions used by syntaxchk.c, and callers of syntaxchk.c

 NOTE: syntaxchk.c must specify #define SYNTAXCHK 1 to ensure the global
 variables it uses are exposed.

 HISTORY:

 Date Who Description
 ----------- --- --
 2004-Jun-01 RXT Created

**************************Documentation End************************************/

#define TokIsData 100
#define TokIsNum 101
#define TokIsEOS 255
#define TokIsBlank 0
#define TokIsComma 1
#define TokIsEqual 2
#define TokIsLeftParen 3
#define TokIsRightParen 4
#define TokIsLessThan 5
#define TokIsGreaterThan 6
#define TokIsLeftBrace 7
#define TokIsRightBrace 8
#define TokIsDash 9
#define TokIsUnderBar 10
#define TokIsAnd 11
#define TokIsPound 12
#define TokIsAt 13
#define TokIsPlus 14
#define TokIsSlash 15
#define TokIsPercent 16
#define TokIsAsterisk 17
#define TokIsSemiColon 18
#define TokIsColon 19
#define TokIsSingleQuote 20
#define TokIsDoubleQuote 21
#define TokIsTilde 22
#define TokIsBar 23
#define TokIsQuestion 24
#define TokIsPeriod 25
#define TokIsExclamation 26
#define TokIsBackSlash 27
#define TokIsDollar 28
#define TokIsReverseQuote 29
#define TokIsLeftBracket 30
#define TokIsRightBracket 31

Printed: Nov. 13, 2012 Page 32

Parsing, Syntax Checking and Interpreting – User’s Guide Richard Tsujimoto, Inc.

#define DUMMYRULE 48059 /* Used to reserve space for a rule set
for future changes */
#define CONTRULE 52428 /* Indicates a statement continuation
delimiter encountered*/
#define SYNTAXERR 56797 /* Indicates a syntax error found
*/
#define LASTRULE 61166 /* Marks the successful end of a rule
"path" */

/* "Next Rule" markers
 These values reflect the location of the next "rule" to be applied during
syntax checking. In effect,
 the values reflect the indexed location of the struct entry that contains the
"rule". Since these
 are hard-coded offsets, care should be taken when changes are made.
 NOTE: 1. use DUMMYRULE to reserve space for future changes
 2. add more "next rule" markers as needed. */

#define GoTo00 0
#define GoTo01 1
#define GoTo02 2
 .
 .
 .
#define GoTo599 599
#define GoTo0600 600

struct syntax_table { /* Table of syntax rules */
 int tokentype; /* token type flag */
 int nextrule; /* next syntax rule to process */
 char *keyword; /* optional keyword string */
 int (*userexit)(); /* optional user exit */
};

#if SYNTAXCHK == 1
int contrule_loc = -1; /* Loc of syntax rule to execute due to a statement
continuation */
#else
extern int syntaxchk(char cmdline[], /* String to be checked */
 struct syntax_table *syntaxtab, /* Table of syntax rules */
 int *tokenloc, /* Index value of bad token */
 int *tokenlen); /* Length of bad token */
#endif

Printed: Nov. 13, 2012 Page 33

Parsing, Syntax Checking and Interpreting – User’s Guide Richard Tsujimoto, Inc.

APPENDIX D. interpret.h

/*************************Documentation Start***********************************

 NAME: interpret.h - Header file for interpret.c and user code that invokes
 interpret.c

 DESCRIPTION:

 This file contains definitions used by interpret.c, and callers of interpret.c

 NOTE: interpret.c must specify #define INTERPRET 1 to ensure the global
 variables it uses are exposed.

 HISTORY:

 Date Who Description
 ----------- --- --
 2004-Jun-01 RXT Created

**************************Documentation End************************************/

#if INTERPRET == 1
int fail_rc; /* Error rc returned from user exit */
int contrule2_loc = -1; /* Loc of syntax rule to execute due to a statement
 continuation */

int interpret(char cmdline[], /* String to be interpreted */
 struct syntax_table *syntaxtab); /* Table of syntax rules */
#else
extern int interpret(char cmdline[], /* String to be interpreted */
 struct syntax_table *syntaxtab); /* syntax rules */
#endif

Printed: Nov. 13, 2012 Page 34

Parsing, Syntax Checking and Interpreting – User’s Guide Richard Tsujimoto, Inc.

APPENDIX E. OS/390 V2 Token types

*
* Special token values
*
GOTORULE
CONTRULE
SYNTAXERR
LASTRULE
*
* Normal token values
*
TOK_IS_DATA
TOK_IS_NUM
TOK_IS_EOS
*
TOK_IS_BLANK
TOK_IS_COMMA
TOK_IS_EQUAL
TOK_IS_LPAREN
TOK_IS_RPAREN
TOK_IS_LT
TOK_IS_GT
TOK_IS_LBRACE
TOK_IS_RBRACE
TOK_IS_DASH
TOK_IS_UBAR
TOK_IS_AND
TOK_IS_POUND
TOK_IS_AT
TOK_IS_PLUS
TOK_IS_SLASH
TOK_IS_PERCENT
TOK_IS_STAR
TOK_IS_SCOLON
TOK_IS_COLON
TOK_IS_SQUOTE
TOK_IS_DQUOTE
TOK_IS_NOT
TOK_IS_TILDE
TOK_IS_BAR
TOK_IS_QUEST
TOK_IS_PERIOD
TOK_IS_EXCLAM
TOK_IS_CENT
TOK_IS_BSLASH
TOK_IS_DOLLAR
TOK_IS_SBAR
TOK_IS_RVQUOTE

Printed: Nov. 13, 2012 Page 35

	1 Introduction
	1.1 Latest changes
	1.2 Reference Material

	2 PARSING
	2.1 What is Parsing?
	2.2 Parsers
	2.3 Tokenizing Data
	2.3.1 Delimiters
	2.3.2 Modifying the List of Delimiters
	2.3.2.1 OS/390
	2.3.2.2 Non-OS/390

	2.4 Application Programming Interface
	2.4.1 OS/390
	2.4.2 Non-OS/390

	2.5 Examples
	2.5.1 OS/390
	2.5.2 Non-OS/390

	3 Syntax Checking
	3.1 What is Syntax Checking?
	3.2 Syntax Checkers
	3.3 Grammar
	3.3.1 Syntax rule format

	3.4 Syntax table examples
	3.4.1 OS/390
	3.4.2 Non-OS/390

	3.5 Statement continuation
	3.5.1 OS/390 and Non-OS/390

	3.6 Application Programming Interface
	3.6.1 OS/390
	3.6.2 Non-OS/390

	3.7 Programming examples
	3.7.1 OS/390
	3.7.2 Non-OS/390

	3.8 Maintaining syntax tables for non-OS/390 platforms
	3.8.1 DUMMYRULE
	3.8.2 SYNTBLGEN
	3.8.2.1 Command syntax for SYNTBLGEN
	3.8.2.2 Example using SYNTBLGEN

	4 Interpreting
	4.1 What is interpreting?
	4.2 Interpreters
	4.3 Application Programming Interface
	4.3.1 OS/390
	4.3.2 Non-OS/390

	4.4 User exits
	4.4.1 OS/390 user exits
	4.4.1.1 Syntax rule specifications
	4.4.1.2 Calling the user exit

	4.4.2 Non-OS/390 user exits
	4.4.2.1 Syntax rule specifications
	4.4.2.2 Calling the user exit

	4.5 Programming examples
	4.5.1 OS/390
	4.5.2 Non-OS/390

	5 Installation and build instructions
	5.1 Installation
	5.2 Building the tools and sample programs

	APPENDIX A. Default Delimiters
	APPENDIX B. parse.h
	APPENDIX C. syntaxchk.h
	APPENDIX D. interpret.h
	APPENDIX E. OS/390 V2 Token types

