
MQSeries Publish/Subscribe

http://www.software.ibm.com/ts/mqseries

Introduction to
 MQSeries Publish/Subscribe

Steve Bolam
MQSeries Development

MQSeries Publish/Subscribe

Contents

What is publish/subscribe
Terms and concepts

Publishers and publications
Subscribers and subscriptions
Topic
Broker
Stream

Message flows
Command message formats
Control commands
System programming

MQSeries Publish/Subscribe

Contents

1

�2

7

(

6

This presentation introduces MQSeries Publish/Subscribe, in particular it
describes the publish/subscribe model
introduces some of the key terms and concepts
shows how messages (and information) flow within an MQSeries Publish/Subscribe
network
describes the format of the messages used by applications using MQSeries
Publish/Subscribe
describes the commands that are available for controlling MQSeries
Publish/Subscribe
illustrates the features available to the systems programmer

For more information consult the MQSeries Publish/Subscribe User’s Guide.

MQSeries Publish/Subscribe

What is Publish/Subscribe ?

providers of information need have no knowledge of consumers

consumers of information need have no knowledge of providers

new providers/consumers can be added without disruption

Publish/Subscribe is a term used to define an application model in
which the provider of some information is decoupled from the
consumers of that information.

MQSeries Publish/Subscribe

What is Publish/Subscribe

1

�2

7

(

6

Publish/subscribe systems have become very popular in recent years as a way of
distributing data messages from publishing computers to subscribing computers. Such
systems are especially useful where data supplied by a publisher is constantly changing
and a large number of subscribers needs to be quickly updated with the latest data.
Perhaps the best example of where this is useful is in the distribution of stock market
data.

In such systems, publisher applications of data messages do not need to know the
identity or location of the subscriber applications which will receive the messages.
Similarly, the subscribing applications do not need to know the identity or location of the
publishing application providing their information. In this sense the providers and
consumers are said to be loosely-coupled.

MQSeries Publish/Subscribe

The classic example

A "feed" provides a continuous flow of information
which is pushed to interested parties

Traders consume this information and use it as a
basis for the buying and selling stock

STOCK
FEED

Stock Prices

Trader Trader Trader Trader Trader

MQSeries Publish/Subscribe

What is Publish/Subscribe

1

�2

7

(

6

Perhaps the most-commonly quoted example of a Publish/Subscribe system is one
which provides stock-market information. Here a "feed" provides (publishes) a
continuous flow of information containing the latest stock prices. The latest stock prices
are required by traders who need this information in order to conduct trades. Traders
register their interest in (subscribe to) particular stock prices and receive updates as
prices change. Traders can be added/removed without disruption to the providers of the
information who have no knowledge of who is receiving their information.

The terms "push" and "pull" are also becoming increasingly popular when describing
the flow of information between applications. If we concentrate on this example, traders
receive new information from the stock-feed as soon as a stock price changes. In this
sense the information can be thought of as being pushed directly to them. This pushing
of information from provider to consumer is one of the major differentiators between
publish/subscribe and more conventional systems. Our stock market example could
have equally been designed in such a way that updated stock prices only flowed to the
traders when they specifically requested, or pulled them from a central repository
(server) of all stock prices. In such a system, the empahasis would instead be on the
traders, to request a refresh of their stock prices on a continual basis.

In fact MQSeries Publish/Subscribe supports both modes of operation.

MQSeries Publish/Subscribe

The Request/Reply model

Compare with the MQSeries "Request/Reply" model in which
applications communicate via named queues

Server

Client

SERVER.REQUEST.QUEUE

CLIENT.817.REPLY.QUEUE

MQSeries Publish/Subscribe

The Request/Reply model

1

�2

7

(

6

Before continuing with publish/subscribe let us consider how it differs from one of the
most popular communication models provided by MQSeries, the "Request/Reply"
model.

The Request/Reply model is particularly suited to a client-server architecture where
clients request some service from a Server application. In the previous foil the provider
(server) and consumer (client) had very little knowledge of each other. In the
"Request/Reply" model the applications are more tightly-coupled since they need to
communicate with one another via named queues. The client puts his request on a
named queue which is being read by the server. The Server passes back the
information required by the client in a specific queue nominated by the client. Unlike, the
Publish/Subscribe model, the Request/Reply model is very much a "pull" interface since
information only flows from the provider to the consumer when the consumer requests it
specifically.

MQSeries Publish/Subscribe

Loose-coupling with Publish/Subscribe

Publish/Subscribe applications need only be loosely-coupled by a
topic associated with each piece of information

Publisher

Subscriber

T
o
p
i
c

Subscriber
Subscriber

Subscriber

Publisher
Publisher

Publisher

Subscriber

T
o
p
i
c

T
o
p
i
c

Publisher
Publisher

Subscriber
Subscriber

T
o
p
i
c

1:1 1:many many:1 many:many

MQSeries Publish/Subscribe

Loose-coupling with Publish/Subscribe

1

�2

7

(

6

In the MQSeries Publish/Subscribe model the only thing which connects publishing and
subscribing applications is the topic or subject which the publisher associates with his
information. Publishers and subscribers need only agree on the topic to become
connected to one another. Each different piece of information has its own topic
associated with it. Subscribers nominate which types of information they want to receive
by subscribing to specific topics.

Publishers of information are unaware of subscribers to the extent that they may publish
information even if there are no subscribing applications requiring it. Publishing and
subscribing are completely dynamic processes. New subscribers and new publishers
can be added to the system without disruption.

With respect to a given topic, or piece of information, all possible combinations of
publishers/subscribers are possible, that is:

information about each topic may be provided by a single or multiple publishing
applications
the information may be received and processed by one or more subscribing
applications

The number of publishers and subscribers connected by a single topic depends upon
the type of information which is flowing between them. As we will see later, MQSeries
Publish/Subscribe supports both state and event based information, or topics.

MQSeries Publish/Subscribe

NewYork/Information Technology/IBM

Topic strings

Specifies the subject matter of publication

Can be any length, any SBCS characters can be used

Recommended to add structure using the / character

For example, a topic string format used to group stock
prices from stock markets around the world:

 <Market>/<Sector>/<Company>

SubscriberPublisher

MQSeries Publish/Subscribe

Topic strings

1

�2

7

(

6

Topic strings are the only thing needed to connect publishing and subscribing
applications. When designing a system to use MQSeries Publish/Subscribe, firstly
analyze the required flow of information between the applications. Once this task has
been carried out, each piece of information will need to be described by a topic string.

Topic strings are of arbitrary length, and can contain SBCS (single-byte character set)
characters only. Topic strings are case sensitive and a blank character has no special
meaning. A null character terminates the string and is not considered to be part of it.

When designing a set of topics, it is strongly recommended to use the / character to add
structure to the topic strings. Apart from making the topic strings more readable, they
allow subscribing applications to request whole subsets of the available information
using wildcard topics. Structuring topic strings using the / character will also ensure
compatibility with other MQSeries business integration products.

Consider our stock market example and the possible set of topic strings which could be
used. We need to provide information about the stock prices from various markets. The
name of the market will form the first part of our topic string. We would also like to
identify in the topic string, the name of the company for which the stock price applies,
and what sector or classification that the company belongs to. For example, IBM would
be classified as an I.T. company and the topic string "NewYork/Information
Technology/IBM" would represent the IBM stock price on the New York stock exchange.

MQSeries Publish/Subscribe

Wildcard topics

Used by subscribers to receive information on multiple
topics

* matches with zero or more characters
? matches with exactly one character

E.G. With topic <Market>/<Sector>/<Company>
* receives all stock prices from all markets
London/* receives all stock prices from the London market
NewYork/Banks/* receives stock prices for all banking companies

 from the New York market
//IBM receives the IBM stock price from all markets

MQSeries Publish/Subscribe

Wildcard topics

1

�2

7

(

6

Subscribers can add wildcard characters to their topic strings in order to receive
information on multiple topics. Two wildcard characters are permissable:

 * will match any sequence of zero or more characters
 ? will match with exactly one character

If the / character has been used to structure the topics then it will be easier for an
application to subscribe to a particular subset of the information using a single wildcard
topic string and without it needing to know exactly which topics are being published on.
For example, wildcard topic:

’*’ receives all the stock prices from all stock markets
’London/*’ receives all of the stock prices from the London market
’NewYork/Banks/*’ receives all of the stock prices for banking companies from the

 New York market
’*/*/IBM’ receives the IBM stock price from all of the stock markets

The use of wildcard topics also makes systems more extendible. For example, the
subscriber using the "NewYork/Banks/*" topic string to receive banking stock prices
needn’t know the names of all the banking companies being published on. Likewise
when a new banking company is added to this part of the market the subscribing
application will become aware of its existence as soon as that company becomes
quoted, and the new topic is published on for the first time.

MQSeries Publish/Subscribe

Publishers, subscribers and brokers

Providers of information are called publishers

Consumers of information are called subscribers

Publishers and subscribers are connected to one another by the
services provided by a broker

Queue manager hosts a single broker

MQSeries Publish/Subscribe

Publishers, subscribers and brokers

1

�2

7

(

6

Just to recap, applications which provide information are called publishers. Applications
which consume information are called subscribers. We have already seen how topics
are used to logically connect publishers and subscribers together. In practise however, a
special application called a broker is needed to physically connect the publishing and
subscribing applications together. A broker can be thought of as a special MQ
application which runs at different queue managers within an MQ network. Each queue
manager can only host a single broker.

MQSeries Publish/Subscribe

Publishers, Subscribers and Brokers

subscription

publication
Broker Network

Subscriber SubscriberSubscriber

Publisher Publisher

MQSeries Publish/Subscribe

Publishers, subscribers and brokers

1

�2

7

(

6

Publishing and subscribing applications don’t talk to one another directly, instead they
each talk to a broker who acts as a middleman to ensure that information is passed from
the publishers to the subscribers. In fact, publishing and subscribing applications don’t
need to talk to the same broker in order for information to flow between them. Instead
they can be connected by a broker network, a network of connected brokers each
running at different queue managers.

MQSeries Publish/Subscribe

Publications and subscriptions

Subscribers send subscriptions to the broker to register their
interest in information relating to specific topics

Publishers provide information about specific topics by sending
publications to the broker

The broker forwards each publication it receives to all subscribers
with a subscription which matches the associated topic

MQSeries Publish/Subscribe

Publications and subscriptions

1

�2

7

(

6

A subscriber specifies which topics it is interested in receiving information about by
specifying them in a special message known as a subscription which it sends to the
broker. A subscriber may send multiple subscriptions to the broker, each of which
specifies one or more topics.

A publisher publishes its information in another special message which it sends to the
broker known as a publication. Contained within this message will be both the topic
being published on and the information which the publisher is providing.

It is the job of the broker, or broker network if multiple brokers running at different queue
managers have been connected together, to ensure that all subscribing applications with
matching subscriptions to the topic being published on receive the publisher’s message.

MQSeries Publish/Subscribe

Single Broker Network

subscription

publication

Publisher

Subscriber

Publish and subscribe at same broker

Broker Network

London

Broker 1

MQSeries Publish/Subscribe

Single Broker Network

1

�2

7

(

6

Each queue manager can only play host to a single broker. In this example, the broker
network consists of just a single broker, Broker1. The queue manager playing host to
this broker is in London.

The publisher publishes its information to Broker1, it does this by sending a message to
one of the broker’s queues. The subscriber subscribes at and receives its publications
from the same broker. To subscribe it sends one or more messages to another of the
broker’s queues.

Soon we will see publishers and subscribers residing at different brokers within a
multi-broker network.

MQSeries Publish/Subscribe

Broker queues

Publications are sent to a stream queue

SYSTEM.BROKER.DEFAULT.STREAM by default

Subscriptions are sent to the broker’s control queue

- SYSTEM.BROKER.CONTROL.QUEUE

Broker state, e.g. subscriptions, is stored on internal broker queues

- SYSTEM.BROKER.*

MQSeries Publish/Subscribe

Broker queues

1

�2

7

(

6

Publishers and subscribers send their message to specific queues which the broker is
listening on. Publications and subscriptions are sent to different queues. Publications
are sent to one of the stream queues which the broker is listening on. Streams are a
method of grouping different kinds of related topics together and are explained later. A
default stream queue exists on every broker called
SYSTEM.BROKER.DEFAULT.STREAM. Subscriptions are always sent to the same
queue, this is called broker’s control queue, SYSTEM.BROKER.CONTROL.QUEUE.

Apart from the queues which the broker reads from, it also uses internal queues to store
its persistent state, for example subscriptions. Subscriptions are persistent, meaning
that they survive both a broker and a queue manager restart. Subscriptions need to be
explicitly deregistered before a subscriber will stop receiving information about a
particular topic. As an alternative, subscriptions can have an expiry associated with them
and only be active for a nominated period of time.

All of the standard facilities provided by the MQI are available to publishing and
subscribing applications. Messages can be sent to, or received from, the broker both
inside and outside of syncpoint. As well as subscription messages having an expiry
associated with them, publication messages can also be sent to the broker with an
expiry set, the information contained within them may only be relevant for a defined
period of time.

MQSeries Publish/Subscribe

Message flows

Publisher

Stream
Queue

Subscriber
Queue

Control
Queue

Subscriber

subscription

publication

1

2

3

4

Broker1

MQSeries Publish/Subscribe

Message flows

1

�2

7

(

6

This foil describes the message flows which occur between the broker, a publisher and a
subscriber. In particular it describes how information published by a publisher finds it
way to a subscriber via the broker. When a subscriber registers its interest in some
information it needs to nominate a queue where it wants its information to be sent.
1. A subscriber sends a message to the broker’s control queue,

SYSTEM.BROKER.CONTROL.QUEUE, containing his subscription to some topic,
say Topic1. This is read by the broker which remembers details of the subscription
such as the queue where the subscriber wants his publications to be sent.

2. Information is published on the same topic, Topic1, by a publishing application in a
message sent to stream queue SYSTEM.BROKER.DEFAULT.STREAM.

3. The publish message is read by the broker and forwarded to the subscriber’s queue.
4. The subscribing application reads the publication from its subscriber queue.

As with all MQSeries messaging the flow of information from publisher to subscriber can
be asynchronous. If the broker isn’t running then the publication will remain on the
stream queue until the broker is restarted. If the subscribing application is not active
then publications will build up on its subscriber queue.

MQSeries Publish/Subscribe

Multi-Broker Network

subscription

publication

Publish and subscribe at any broker within
network
Brokers exchange subscriptions and publications
as necessary

Broker Network

Broker 2

Publisher

Subscriber

Broker 1

London Tokyo

MQSeries Publish/Subscribe

Multi-Broker Network

1

�2

7

(

6

Consider the same example in a simple multi-broker network in which a further broker,
Broker2, running at a queue manager in Tokyo, is added to the network. The publisher
still publishes his information in London, but this time the information must find its way to
a subscribing application at Broker2 in Tokyo. To achieve this publications and
subscriptions are exchanged between the two brokers. In effect the Tokyo broker acts
as a subscriber to publications being published at Broker1 in London, and then
republishes them to its local subscribers.

From an MQ perspective messages must be able to flow between the two queue
managers concerned. Normally there will be direct channels in both directions between
the queue managers.

MQSeries Publish/Subscribe

Message flows

subscription

publication

Publisher

Subscriber
Queue

Stream
Queue

Control
Queue

Subscriber

Broker Network

2

Stream
Queue

Control
Queue

1

3

5

6

4

London Tokyo

MQSeries Publish/Subscribe

1

�2

7

(

6

Let us consider the message flows which occur between the broker, a publisher and a
subscriber in our simple multi-broker network. This time the subscribing application is
subscribing at a different broker to the application which is providing it with its
information.
1. The subscribing application sends his subscription message to Topic1 to the

SYSTEM.BROKER.CONTROL.QUEUE of the Tokyo broker.
2. The Tokyo broker propagates this subscription to Topic1 by sending its own

subscription to this topic to the control queue,
SYSTEM.BROKER.CONTROL.QUEUE, of the London broker.

3. Sometime later, a publishing application provides some information about Topic1 in a
message sent to the stream queue at London broker.

4. The London broker notices that it has a single subscription for information about this
topic, this being from the Tokyo broker. This causes the publisher’s message to be
sent to same stream queue at the Tokyo broker.

5. Tokyo broker reads the publication from its stream queue, it too has a single
subscription for information about this topic, this being from the subscribing
application. The publisher’s message is then forwarded to the subscriber’s queue.

6. The subscribing application in Tokyo gets the message from its subscriber queue.

Note that brokers consolidate subscriptions, a further subscription to Topic1 at the
Tokyo broker from another subscriber would not result in another subscription being
lodged at the London broker.

Message flows

MQSeries Publish/Subscribe

Broker Network

HQ

Europe

London Paris Milan

United
States

New
York Chicago

Arranged in a hierarchy, cycles detected
Network consists of parent and child brokers
The parent broker at the top is called the root broker

MQSeries Publish/Subscribe

Broker network

1

�2

7

(

6

The broker should be thought of as a single entity, however it may actually be built up of
multiple brokers. This may be desirable for geograpical reasons, for example to link
applications which are based at different locations within an enterprise. It may also be
desirable for performance reasons to balance the workload over more than just a single
broker. Multiple brokers must be connected in a hierarchy, though this will be hidden
from other applications since the publishing and subscribing can be performed
anywhere within the network.

Both subscription and publication traffic take a hierarchic route to their destinations.
Subscriptions flow to all nodes in the broker network. A broker consolidates all of the
subscriptions it has received. For example, if a broker has received ten subscriptions to
a particular topic it will only register a single subscription on behalf of these subscribers
to each of its neighboring brokers.

Whereas subscriptions flow to all nodes in the broker network, publications only flow
between brokers when necessary. When a broker receives a publication about a topic a
broker will only forward the publication to neighbouring brokers if they are subscribing to
that topic on behalf of a subscribing application, either directly or indirectly. Soon we will
see how subscriptions and publications flow through a broker network.

MQSeries Publish/Subscribe

Publish anywhere, subscribe anywhere

 HQ

Europe

London Paris

Asia

Tokyo

Broker Network

Publisher
Publisher

Publisher

Publisher

Publisher

Subscriber
Subscriber

Subscriber Publisher Subscriber
Subscriber

Subscriber
Subscriber

Subscriber

Subscriber

Subscriber

Publisher
Publisher

MQSeries Publish/Subscribe

Publish anywhere, subscribe anywhere

1

�2

7

(

6

We have seen how multiple brokers can be connected together to form a broker
network. The network topology is a hierarchy, publishing and subscribing applications
can reside anywhere within the hierarchy, and MQSeries Publish/Subscribe will ensure
that information flows exactly to those applications which need it.

Publication messages take a hierarchical route from publisher to subscriber. For
example, a publication at the Tokyo broker would need to pass through the Asia, HQ
and Europe brokers before a subscriber to that information at the London broker would
receive it. Note that this is the case even if there was a dedicated channel between the
Tokyo and London queue managers.

From a performance point of view the same rules used to design an MQSeries network
also need to be applied to the design of a broker network. In all cases the number of
messages, predominantly publication messages, needs to be known when estimating
the workload of an individual broker. In general, since publications take a hierarchical
route, parent brokers will usually need to cope with a heavier workload than their
children. The heaviest workload will usually be at the root broker, the parent broker at
the top of the hierarchy.

MQSeries Publish/Subscribe

Subscribing in a multi-broker network

Subscriptions flow to all brokers in the network

Root

Europe

London

Asia Subscriber1
1

23

4

subscription

publication

MQSeries Publish/Subscribe

Subscribing in a multi-broker network

1

�2

7

(

6

The next three foils illustrate how subscriptions and publications flow between brokers.
In particular they will show how the information published at the Europe broker reaches
different subscribing applications at both the Root and Asia brokers. In this first foil, the
first subscribing application, Subscriber1, sends his subscription to his local Asia broker.
His subscription is then propagated to all of the other brokers in the network.

1. Subscriber1 subscribes to Topic1 at the Asia broker.
2. This is the first subscription to Topic1 which the Asia broker has received. As a

consequence it has no subscriptions to this topic at its neighbouring brokers. The
Asia broker lodges a subscription at the Root broker for Topic1.

3. The Root broker in turn subscribes to Topic1 at the Europe broker.
4. Finally the Europe broker subscribes to Topic1 at the London broker.

The subscription has flowed to all brokers in the network. A route now exists such that
Subscriber1 can receive information published at any node within the broker network on
Topic1.

Note that subscription propagation around a network is an asynchronous operation,
channels or brokers may be down or busy. Until a subscription has reached all brokers
within the network the possibility exists that subscribers will not be given publications
being published in parts of the network that the subscription has yet to reach.

MQSeries Publish/Subscribe

Further subscription in a multi-broker network

Subscriptions are only propagated when necessary

subscription

publication

Europe

London

Asia Subscriber1

1

2

RootSubscriber2

MQSeries Publish/Subscribe

Further subscription in a multi-broker network

1

�2

7

(

6

In this next foil, a further subscribing application, Subscriber2, also registers its interest
in receiving information published on the same topic, Topic1. This time the subscribing
application is at a different node, the Root broker. Its subscription also needs to be
propagated around the broker network, but as we will see, brokers consolidate
subscriptions to the same topics, as a consequence, the subscription doesn’t need to be
propagated down the left sub-tree of the hierarchy.

1. The additional subscribing application, Subscriber2, sends his subscription to Topic1
to the Root broker.

2. Subscriptions are only propagated where necessary. The Root broker already has a
subscription to the Europe broker, the one which it lodged when Subscriber1’s
subscription was made. Instead the Root broker just needs to subscribe to
publications to Topic1 on the Asia broker.

Note that the Asia broker was already subscribing to this topic at the Root broker. We
know have the situation whereby the Root and Asia broker’s are both subscribing to
each other’s publications on Topic1. This is not the case elsewhere in the network, the
Europe and London brokers aren’t actually subscribing to the topic. They are merely
being subscribed to on this topic.

MQSeries Publish/Subscribe

Publishing in a multi-broker network

Publications are only passed where subscriptions exists

London

Asia Subscriber1
1

2 3

4
EuropePublisher

RootSubscriber2

3

subscription

publication

MQSeries Publish/Subscribe

Publishing in a multi-broker network

1

�2

7

(

6

Now consider what happens when a publisher at the Europe broker publishes information
on Topic1. As we will see, the publication isn’t just sent to every broker within the broker
network. Instead publications only ever flow where subscriptions exist. In the foil,
publications only flow in the opposite direction to the subscription arrows.

Look at the direction the subscription arrows are pointing and try to forget about the word
subscription. Instead try to think about who is subscribing to who. For example, the Root
broker is subscribing to the Europe broker, the subscription arrow points from the Root
broker to the Europe broker. Thinking about subscriptions in this way may help you to
understand the diagram.
1. The publishing application publishes information about Topic1 by sending a message to

the Europe broker.
2. The publication is passed to the Root broker. It doesn’t pass to the London broker

because that broker is not subscribing to the Europe broker (no subscription exists from
London to Europe broker on Topic1)

3. The Root broker receives the publication. It has two subscriptions to Topic1. From its
local subscribing application, Subscriber2, and the Asia broker. The publication is sent
to each of these ’subscribers’.

4. The Asia broker receives the publication from the Root broker and forwards it to its
subscribing application, Subscriber1.

The Asia broker actually has two subscription arrows pointing towards it. The second is
from the Root broker, for obvious reasons the publication isn’t published again to the Root
broker.

MQSeries Publish/Subscribe

Types of publications

Events
 Continuing succession of logically independent messages, for

example:
 trades
 customer buying an airline ticket

Subscribers receive as available

State
Information that is being regularly updated or replaced, for

example:
stock prices
furnace temperatures

Brokers can retain copy of last publication
Subscribers may receive immediately or check at their own

initiative

MQSeries Publish/Subscribe

Types of publications

1

�2

7

(

6

When a publish/subscribe system is being designed it is important to decide whether the
information being published on each topic is either state or event related.

Event publications are usually independent from one another. They usually indicate that
some further action or processing is needed. A subscriber missing an event may be
disasterous and generally subscriptions to event publications all need to be in place
before any events are published. There may be more than one publisher of event
publications for a given topic. Examples of this type of information are:

a stock trade
a customer buying an airline ticket

State publications usually contain information that is being updated at regular intervals.
If a subscriber misses a state publication then generally it isn’t a problem since an
updated view of the state will about to be published again. The broker may also be
instructed to retain the last copy of a state publication. This can be sent to new
subscribers to that state topic rather than letting them wait for the information to be
published again. Usually there is only a single publisher per state topic. Examples of this
type of information are:

a stock price
the temperature of a furnace

MQSeries Publish/Subscribe

"Results Service" sample programs

Match Simulators:

Results Service:

Events:
Match started
Goal scored
Match Ended

State:
Latest scores

Broker Network

Publisher

Events

Publisher

Events

Subscriber
and Publisher

EventsState

amqsgam Newcastle Southampton amqsgam Liverpool ManUtd

amqsres

MQSeries Publish/Subscribe

"Results Service" sample programs

1

�2

7

(

6

Two sample programs are provided. Together these form a results gathering service for
sport events, in this case soccer matches. One of the sample programs, amqsgam,
simulates a soccer match. It does this by publishing event publications to the broker,
when the soccer match starts; when a goal has been scored in the match; and when the
match has ended. There can be multiple matches, and consequently multiple instances
of amqsgam, all running simultaneously. With event information it is usual for there to be
more than one publisher on the same topics. Information such as which team has
scored is published as data. The topics used by amqsgam are:

Sport/Soccer/Event/MatchStarted
Sport/Soccer/Event/ScoreUpdate
Sport/Soccer/Event/MatchEnded

Another sample program, amqsres, acts a a Results Service for all soccer matches
being played within the broker network. It subscribes with a wildcard topic to receive all
event publications published by the match simulators. It uses them to keep track of the
latest scores in all soccer matches currently being played. The same program publishes
the latest scores in each of these matches as a series of state publications. For state
information there is usually only one publisher on each topic, for the example teams in
the foil the following topics would be used:

Sport/Soccer/State/LatestScore/Newcastle Southampton
Sport/Soccer/State/LatestScore/Liverpool ManUtd

MQSeries Publish/Subscribe

Retained publications

Subscribers can be given a copy of a state publication when they first subscribe

subscription

publication

Publisher

Stream
Queue

Control
Queue

Broker
Subscriber

Queue

Subscriber

1

2

3

4

Internal
Queue

5

MQSeries Publish/Subscribe

Retained publications

1

�2

7

(

6

In the previous foil we described the two different types of information. We also said that
one of these types, state-based information, was suitable for being retained by an
MQSeries Publish/Subscribe broker. In this foil we describe the message flows which
occur between the broker, publisher and subscriber applications when a subscriber is
sent a copy of the last publication to be published on a particular topic.
1. The publication is published before the subscriber has made his subscription.
2. The publisher also asks the broker to retain the publication which it does on one of its

internal queues.
3. The subscriber sends a subscription to that topic to the broker’s control queue.
4. The broker retrieves the retained publication from its internal queue and forwards it

onto the subscriber’s queue.
5. The subscriber receives the publication from the queue.

The advantage of using retained publication is that new subscribers can receive the
latest information about a topic as soon as they subscribe. The alternative would be that
the new subscriber would need to wait for the publisher to publish the information again.

Broker only retain a single publication per topic. A new retained publication will replace
an existing one.

MQSeries Publish/Subscribe

Streams

Related publications (and topics) can be grouped into a stream

Can be thought of as a high-level qualifier for the topic
separate name space
wildcards do NOT span streams

Each stream has a separate stream queue

A given stream does not have to be supported by every broker within
a broker hierarchy, though some are:

SYSTEM.BROKER.DEFAULT.STREAM

SYSTEM.BROKER.ADMIN.STREAM

MQSeries Publish/Subscribe

Streams

1

�2

7

(

6

A stream queue is the queue which publishing applications send their publication messages to.
We now describe what a stream is, and give some examples of when their use may be
appropriate. Brokers all support a default stream, SYSTEM.BROKER.DEFAULT.STREAM,
which could be used by all applications, without the need for additional streams.

A stream can be thought of as a group of related topics. For example, all topics being used to
provide applications with the latest stock prices could be thought of as a separate stream from
those topics being used by a service which provides information about the weather in various
parts of the world.

Streams partition information into separate groups, however, the grouping could equally be
performed without using separate streams but using different topic prefixes instead. For
example, the default stream, SYSTEM.BROKER.DEFAULT.STREAM could consist of
information about:

stock prices using topics ’Stock/Prices/....’
and weather info using topics ’Weather/Temperature/....’

 Equally the information could have been grouped into separate streams:
a stream called STOCK.STREAM using topics ’Prices/......’
and a stream called WEATHER.STREAM using topics ’Temperature/......’

In that respect a stream could be thought of as the high-level qualifier for each topic. The
stream to which a publication message belongs is implicit from stream queue which it was sent
to. If we had a separate stock stream then a queue called STOCK.STREAM would need to be
created and publishing applications would need to send their messages to this queue instead.

MQSeries Publish/Subscribe

Use - restricting access

Broker

Publish and subscribe authority to sensitive information can be restricted

Privileged
Publishers

Privileged
Subscribers

Secure
Stream

Ordinary
Publishers

Default
Stream Ordinary

Subscribers

MQSeries Publish/Subscribe

Use - restricting access

1

�2

7

(

6

The next few foils describe situations where it might be appropriate to use more that just
the default stream. The first possible use for splitting some information into a separate
stream would be to restrict access to it. Authority checks performed by the MQSeries
Publish/Subscribe broker are performed on the stream, or stream queue, and not on
individual topics. A subscriber with authority to receive information about one topic within a
stream has authority to receive information about all other topics in that stream. If some
information is of a sensitive nature then it may be advisable to remove it from the default
stream and put it into a new stream.

Underlying queue manager authority is used to restrict both publisher and subscriber
access to information on each stream. A user has authority to publish information for a
stream if he has the necessary queue manager authority to put messages to the stream
queue of that stream. A subscriber is allowed to receive information being published on a
stream if he has browse authority for the stream queue.

In the example shown, a new stream, and stream queue SECURE.STREAM, has been
created. The administrator will then be able to restrict who is allowed to send messages to
that queue, and who is allowed to receive messages from the queue, using the MQSeries
setmqaut command.

All authority checks are performed at the broker which the application publishes or
subscribes, not at the brokers to which the publication or subscription may be propagated

MQSeries Publish/Subscribe

Use - parallel publishing

Publishers

Subscribers

D

C

B

A

Publishers

Subscribers

3

2

1

replaced by

Subscribers

D

3

C

2

B

A

1

Subscribers

Publishers Publishers

MQSeries Publish/Subscribe

Use - parallel publishing

1

�2

7

(

6

Each broker will support a number of streams, and for each of these streams the broker
will schedule a separate thread to process publications being published on each stream
queue. If publication messages are arriving on the default stream at a faster rate then
they can be processed then it may be appropriate to balance the workload over two
streams instead. Publications can be processed in parallel if they are in different streams.

Publications arriving on a stream queue are processed by the broker in order. Splitting a
stream into two separate streams is only applicable if the information being published on
each of the new streams is unrelated and consequently the order of arrival of both sets of
information at a subscribing application is also independent. If a subscribing application is
subscribing to information being published on more than one stream, and it needs to
process that information in the same order which it was published, then the safest method
of ensuring this would be to publish it on the same stream.

Stream queues are like any other MQSeries queue, and can be ordered by priority
instead of FIFO, this would allow certain publications to take precedence over others if
these publications had different performance goals and needed to be published
immediately upon arrival.

In the example shown in the foil, a single stream is being used to publish two types of
information, letters and numbers. This is then split into two separate streams which can
be processed in parallel by the broker.

MQSeries Publish/Subscribe

Use - to restrict propagation of subscriptions

Each broker can be configured to support only certain streams

This can be used to create a separate stream hierarchy on top of the underlying broker
hierarchy

Europe

London

Root

Asia

Paris Tokyo HongKong

Stock

Trades

RisksAsia

RisksEurope

MQSeries Publish/Subscribe

Use - to restrict propagation of subscriptions

1

�2

7

(

6

We have seen how subscriptions are propagated to all brokers within a broker network. This
allows a subscribing application to subscribe to information published anywhere within the
broker network. In a large broker network this may be inefficient, especially if information for
these topics is known to be published at fixed locations within the network. Streams can also
be used to restrict the propagation of subscriptions to only the necessary parts of the network.
A broker will only propagate a subscription to a neighboring broker if that broker also supports
the stream in question. In that sense each broker hierarchy can be thought of as having one
or more stream hierarchies superimposed on top of it. All brokers support the default stream
so subscriptions for information being published on this stream will be always be propagated
to every broker within the network.

The foil has a number of streams, not all are supported by every broker. As a consequence
both subscription and information flow is restricted. The STOCK stream is supported by every
broker within the hierarchy. Stock prices from all markets within the world are available to
subscribers everywhere. The TRADES stream has information about all stock trades. The
Root broker doesn’t support it, allowing information about the trades in each continent to be
separate. The Root broker doesn’t support this stream, any subscriptions made within Europe
don’t flow to the brokers within Asia and vice-versa.

Lastly two separate streams provide risk investment information based upon information
published on the TRADES stream. These are supported by only a single broker within the
network. The RISKSASIA stream by the Asia broker and RISKSEUROPE stream by the
Europe broker. Since no neighboring brokers support these streams, this information is only
available at these brokers.

MQSeries Publish/Subscribe

Command messages

Publisher commands:
Publish
DeletePublication
RegisterPublisher
DeregisterPublisher

Subscriber commands:
RegisterSubscriber
DeregisterSubscriber
RequestUpdate

MQSeries Publish/Subscribe

Command messages

1

�2

7

(

6

Publishing and subscribing applications send messages to the broker, they can optionally
request the broker to send back a reply message indicating the success or failure of their
command message. Command messages available are:

Publish
A publishing application uses this command message to provide new information about a topic

DeletePublication
A publishing application can request the broker to retain its publications. This command
message can be used to remove a retained publication.

RegisterPublisher
Publishing applications can identify themselves as being a provider of information on specific
topics. Among other things this makes them visible to administration applications.

DeregisterPublisher
Used by a publishing application when it is no longer providing information on specific topics

RegisterSubscriber
Used by a subscribing application to send subscriptions to specific topics

DeregisterSubscriber
Unless a subscription has an expiry associated with it, a subscribing application will continue to
receive information about that topic until it uses this message to remove its subscription.

RequestUpdate
Used by a subscribing application to request a retained publication.

MQSeries Publish/Subscribe

MQRFH Format

Command messages are in MQRFH format
Rules and Formatting header

Header contains command string in the form of
name/value pairs

In a publish command message information follows
header in format chosen by publisher

User-defined format or built-in (e.g. MQFMT_STRING)
DBCS publication data supported

MQSeries Publish/Subscribe

MQRFH Format

1

�2

7

(

6

Publishing and subscribing applications send their messages to the broker in MQRFH format.
This is a variable length header structure which publishing applications prefix to their
publication data. Other command messages don’t need to send associated publication data
and merely consist of the header structure itself.

typedef struct tagMQRFH {
 MQCHAR4 StrucId; /* Structure identifier */
 MQLONG Version; /* Structure version number */
 MQLONG StrucLength; /* Total length of MQRFH */
 MQLONG Encoding; /* Data encoding */
 MQLONG CodedCharSetId; /* Coded character-set identifier */
 MQCHAR8 Format; /* Format name */
 MQLONG Flags; /* Flags */
} MQRFH;

The header also includes a variable-length NameValueString which isn’t included within the
structure definition. Within this string publishing and subscribing applications specify the
command which they want the broker to perform. The StrucLength field in the header defines
the length of the header structure inclusive of the variable length NameValueString at the end
of the structure. The string can be null-terminated or blank-padded to the specified length.

The Encoding, CodedCharSetId and Format fields within the header describe the structure of
any (publication) data which follows the header in the message.

MQSeries Publish/Subscribe

Example command string

Register Subscriber : To information about the IBM stock price

......

......

M Q P S C o m m a n d R e g S u b M Q P S R e g O p t s A n o n

 M Q P S T o p i c " I B M S t o c k P r i c e "

name

value name valuename

value

MQPS parameter names
Quoted topic value since contains significant blanks
All blanks between name/values ignored

MQSeries Publish/Subscribe

Example name/value string

1

�2

7

(

6

The next few foils show the structure of some example messages in MQRFH format.
This foil illustrates the format of a command string which a subscribing application might
use to subscribe to information on a specfic topic, in this case the IBM stock price. The
command string is part of the MQRFH header structure and consists of a number of
parameter names and values separated by blanks.

The parameters all have names which start with the prefix, MQPS, for example
MQPSTopic. The first parameter must specify the command, MQPSCommand, which
the application requires the broker to perform. Each parameter is followed by its
corresponding value, in this case the value is RegSub, which indicates that this is a
RegisterSubscriber command.

Names and values can be separated from one another by any number of blank
characters.

Note that the topic string includes significant blank characters and thus has been
enclosed within a pair of double quotes. These double quotes aren’t part of the value of
MQPSTopic.

Apart from parameters which specify the command and topic, a further parameter,
MQPSRegOpts, has been included for the sake of this example only. This is a
subscription option, its value ’Anon’ means that this is an anonymous subscription.

MQSeries Publish/Subscribe

Example register subscriber message

MsgData consists of
header structure only

MsgDescriptor describes
encoding/ccsid of MQRFH

No data following header
so encoding,ccsid, and
format fields in RFH not set

Subscriber nominates his
subscriber queue to be the
same as his reply queue

MsgDescriptor

Encoding MQENC_NATIVE
CodedCharSetId 437
Format MQHRF

ReplyToQ SUB1.Q
ReplyToQMgr BROKER1

StrucId RFH
Version 1
StrucLength 64
Encoding MQENC_NATIVE
CodedCharSetId 0
Format " "
Flags 0

MQPSCommand RegSub MQPSRegOpts

Anon MQPSTopic "IBM Stock Price"

MsgData

64

MQSeries Publish/Subscribe

Example register subscriber message

1

�2

7

(

6

The Format field in the MsgDescriptor needs to be set to MQFMT_RF_HEADER,
indicating that the message is in MQRFH format. The Encoding and CCSID fields in the
MsgDescriptor describe the numeric and character data within the header. The header
itself also has Format, Encoding and CCSID fields. These are used to describe the
format of any data which follows the header structure in the message data. In the case
of a RegisterSubscriber message there is no following data and these header fields
needn’t be set by the subscribing application.

The example shows the structure of a message which could be used by a subscriber to
register a subscription to the IBM stock price. The sending application needs to set the
StrucLength field within the header to indicate the length of the header structure. This
needs to take into account the length of the variable length NameValueString which
contains the command string. Since the message contains no following data the length
of the message data is the same the length of the header and would also be specified as
BufferLength on the subscriber’s MQPUT call.

Further parameters could have also been added to the command string to indicate the
name of the queue which the subscriber wants to receive publications about the IBM
stock price. Instead these have been left to default to the ReplyToQ and ReplyToQMgr
fields within the MsgDescriptor. It is quite common for a subscriber queue to be the
same queue that an application is using for reply messages from the broker.

MQSeries Publish/Subscribe

Example publish message

StrucId RFH
Version 1
StrucLength 112
Encoding MQENC_NATIVE
CodedCharSetId 437
Format MQSTR
Flags 0

MQPSCommand Publish MQPSPubOpts
NoReg MQPSTopic "IBM Stock Price"

$112.85

MsgData

MsgDescriptor

Encoding MQENC_NATIVE
CodedCharSetId 437
Format MQHRF

112

Header preceeds
publication in MsgData

MsgDescriptor describes
encoding/ccsid of MQRFH

Fields in RFH describe
format,encoding,ccsid of
publication data

StrucLength of RFH
includes name/value string

MQSeries Publish/Subscribe

Example publish message

1

�2

7

(

6

We have seen the format of a message which a subscribing application could have used
to subscribe to information about the IBM stock price. This example shows the format of
the message which a publishing application could use to provide that information. This
message is also in MQRFH format, but in this case the header is followed by the data
which the publisher is associating with its topic. In this case the publisher is publishing
the stock price as string data and this follows immediately after the end of the header.
The broker sends this exact message to the subscriber queue nominated by the
subscribing application.

The publisher needs to specify a different command string to the subscriber, firstly it
needs to indicate that this is a Publish command message.

Whereas the subscriber didn’t need to set the Format, Encoding and CCSID fields in the
header, a publishing application needs to indicate to the subscribing applications what
format his data is in. The publisher’s message may also need to be converted if the
subscribing application is running on a different platform to the publisher.

In this example the length of the RFH header is 112 bytes long. This isn’t the length of
the actual message since this is longer by the length of the string which is being used to
publish the stock price.

MQSeries Publish/Subscribe

Control commands

strmqbrk Start/create a broker

dspmqbrk Display broker status

endmqbrk End a broker

dltmqbrk Delete a broker

clrmqbrk Tidy up a broken hierarchy

MQSeries Publish/Subscribe

Control commands

1

�2

7

(

6

The following commands are available to control a single MQSeries Publish/Subscribe
broker:
strmqbrk

normally used to start the broker, but will also create a broker if one doesn’t exist
on that queue manager.
this is also the command which is used to create broker hierarchies, an optional
parameter can be specfied which nominates the broker’s parent

dspmqbrk
displays the status of the broker

endmqbrk
ends the broker

dltmqbrk
deletes a broker

clrmqbrk
is normally used only in exceptional circumstances to tidy up or make changes to a
broken hierarchy

MQSeries Publish/Subscribe

System programming

The Admin stream
Which streams does a broker support ?
 Who is a broker’s parent and children ?
Broker events

Metatopics
 Who is subscribing and to what topics on each stream ?
Who is publishing and on what topics on each stream ?

Sample administration application
Subscribes to broker publications to display administrative information

Broker exit
Invoked at point broker forwards publication to subscriber

MQSeries Publish/Subscribe

System programming

1

�2

7

(

6

For the administrator or system programmer MQSeries Publish/Subscribe provides:
A special administation stream called SYSTEM.BROKER.ADMIN.STREAM which the
broker itself publishes information on. This contains various topics which can be
subscribed to by an administration application to:

find out who that brokers parent is
find out who that brokers children are
listen for event messages to be published

Each stream also supports a special set of topics known as meta-topics, again these
can be subscribed to find out information such as:

who is subscribing and to what topics
who is publishing information and on what topics

A sample administration application, amqspsd, is provided in both source and
executable form which subscribes to and displays the above mentioned broker
information

The broker also has an exit. When the exit is configured it will be invoked just before
the broker is about to send a publication message to a subscriber

