
Using MQSeries as a Transactional Resource Manager with
WebLogic Server

Version 1.0
October 25, 2001

Copyright
Copyright © 2001 BEA Systems, Inc. All Rights Reserved.
October 25, 2001

Restricted Rights Legend
This document may not, in whole or in part, be photocopied, reproduced, translated, or
reduced to any electronic medium or machine readable form without prior consent, in
writing, from BEA Systems, Inc. Information in this document is subject to change without
notice and does not represent a commitment on the part of BEA Systems, Inc.

Limitation of Liability
BEA Systems, Inc. assumes no liability for use or misuse of the information contained in this
document. No guarantee is made as to the accuracy or correctness of the information
contained herein. This document falls under the limitation of liability in the WebLogic Server
license document.

Trademarks
BEA, WebLogic and Tuxedo are registered trademarks of BEA Systems, Inc. BEA
WebLogic Server, BEA WebLogic E-Business Platform, BEA WebLogic Integration, BEA
WebLogic Portal, BEA WebLogic Commerce Server, BEA WebLogic Personalization
Server, and BEA Campaign Manager for WebLogic, are trademarks of BEA Systems.
All other trademarks are the properties of their respective owners.

Contents

1 Introduction... 1
2 Configuring MQSeries for Use with WebLogic Server.. 1
3 Administering MQSeries JMS Objects... 3

3.1 JMSAdmin... 4
3.2 JNDIMapper.. 4

3.2.1 Resource Naming.. 5
4 WLS MQSeries Classes .. 6

4.1 Programming... 6
4.1.1 Retrieving the MQSeries Connection Factory.. 6
4.1.2 Retrieving the MQSeries Queue ... 7
4.1.3 Create Producer... 7
4.1.4 Sending a Message in a Transaction... 8
4.1.5 Threading Issues.. 8
4.1.6 Asynchronous Consumers... 8

4.2 Example Application... 8
4.2.1 Building... 8
4.2.2 Configuring and Starting WebLogic... 9
4.2.3 Invoking the Client .. 10
4.2.4 Verify Transaction Participation... 10

5 Restrictions and Limitations.. 12
6 Troubleshooting... 13
7 Glossary... 13
8 References and Related Documents.. 14
9 Example Source Code ... 14

1

1 Introduction
The MQSeries Java Messaging Service (JMS) driver may be used to incorporate MQSeries
as a resource manager in WebLogic Server (WLS) distributed transactions. This document
describes a set of support classes, utilities and techniques for utilizing MQSeries JMS with
WLS.

Because the MQSeries JMS driver transaction support is generic with respect to external
transaction managers, it is necessary to provide a layer of abstraction between the MQSeries
JMS implementation and WLS to perform such application server specific functions as
resource registration and dynamic transaction enlistment. This integration layer manages the
interaction of the MQSeries resource manager with the WLS Transaction Manager (TM).
Since the integration layer conforms to standard JMS interfaces, applications maintain
portability.

In addition to the integration layer, a helper-class is provided to create and configure WLS-
specific MQSeries connection factories based on previously configured MQSeries
connection factories. The utility retrieves MQSeries JMS objects from the specified Java
Naming and Directory Interface ™ (JNDI) context, creates the appropriate WLS MQSeries
JMS objects, and places them in the JNDI context of an active WLS for use by application
components.

The following sections describe how to configure MQSeries for use with WLS, how to
administer MQSeries JMS objects and how to manipulate these objects at runtime within the
scope of a global WLS transaction. Also, guidelines for verifying MQSeries transaction
participation are presented. Throughout the following sections a simple example is presented
that illustrates various configuration and programming issues. The example is comprised of
a WLS startup class that services RMI requests to perform MQSeries work transactionally.
Note that the example involves JMS queues, however the concepts and procedures are also
applicable to JMS topics.

2 Configuring MQSeries for Use with WebLogic Server
This section describes at a high level how to configure MQSeries for use with WLS. For
additional information, refer to [2].

1. Install MQSeries 5.2. A 60-day evaluation copy for Windows NT and Windows
2000 is available at http://www.ibm.com/software/ts/mqseries/downloads. Follow the
appropriate installation procedures for the target operating system.

2. Download and install the MQSeries SupportPac MA88: MQSeries classes for Java
and MQSeries classes for Java Message Service from
http://www.ibm.com/software/ts/mqseries/txppacs/ma88.html.

2

3. For utilizing Topics, download and install the MQSeries SupportPac MA0C:
MQSeries - Publish/Subscribe from
http://www.ibm.com/software/ts/mqseries/txppacs/ma0c.html

4. Add the following settings to the WLS environment scripts (startWebLogic.cmd and
setEnv.cmd).

set MQ_INSTALL_PATH=[path of MQSeries installation]
e.g. c:\Program Files\MQSeries

set MQ_JAVA_INSTALL_PATH=[path of Java installation]
e.g. c:\Program Files\MQSeries

set WLS_MQ_JAVA_INSTALL_PATH=[path of WLS MQSeries installation]
e.g. c:\WLSMQSeries

set
CLASSPATH=%CLASSPATH%;%MQ_JAVA_INSTALL_PATH%\Java\samples\base;%MQ_J
AVA_INSTALL_PATH%\java\lib\com.ibm.mq.jar;%MQ_JAVA_INSTALL_PATH%\jav
a\lib\com.ibm.mqjms.jar;%MQ_JAVA_INSTALL_PATH%\java\lib\jms.jar;%MQ_
JAVA_INSTALL_PATH%\java\lib\jndi.jar;%MQ_JAVA_INSTALL_PATH%\java\lib
\fscontext.jar;%MQ_JAVA_INSTALL_PATH%\java\lib\providerutil.jar;%MQ_
JAVA_INSTALL_PATH%\java\lib\connector.jar;%WLS_MQ_JAVA_INSTALL_PATH%
\lib\wlsmqseries.jar
set
PATH=%PATH%;%MQ_JAVA_INSTALL_PATH%\bin;%MQ_JAVA_INSTALL_PATH%\java\b
in;%MQ_JAVA_INSTALL_PATH%\java\lib

Invoke setEnv.cmd

5. Start the Queue Manager

strmqm QM_hostname

6. Run the runmqsc utility to define a sample channel called JAVA.CHANNEL

DEF CHL('JAVA.CHANNEL') CHLTYPE(SVRCONN)TRPTYPE(TCP) MCAUSER(' ')
DESCR('Sample')
END

7. Start the listener process

start runmqlsr -t tcp -p 1414 -m QM_hostname

8. Test the installation:

java MQIVP

Output follows:

MQSeries for Java Installation Verification Program
5639-B43 (C) Copyright IBM Corp. 1997, 1998. All Rights Reserved.
===

Please enter the type of connection (MQSeries or VisiBroker) : (MQSeries)

3

Please enter the IP address of the MQSeries server : localhost
Please enter the port to connect to : (1414)
Please enter the server connection channel name : JAVA.CHANNEL
Please enter the queue manager name :
Success: Connected to queue manager.
Success: Opened SYSTEM.DEFAULT.LOCAL.QUEUE
Success: Put a message to SYSTEM.DEFAULT.LOCAL.QUEUE
Success: Got a message from SYSTEM.DEFAULT.LOCAL.QUEUE
Success: Closed SYSTEM.DEFAULT.LOCAL.QUEUE
Success: Disconnected from queue manager

Tests complete -
SUCCESS: This MQSeries Transport is functioning correctly.
Press Enter to continue...

9. To utilize Topics, start the Pub/Sub Broker

strmqbrk -m QM_hostname

where QM_hostname is the name of the queue manager created at installation time.
Verify that the broker is active by running:

dspmqbrk -m QM_hostname

Then set up the necessary system queues once by running the following script in the
%MQ_JAVA_INSTALL_PATH%\java\bin directory.

runmqsc QM_hostname < MQJMS_PSQ.mqsc

3 Administering MQSeries JMS Objects
To help achieve application portability, JMS connection factories, queues and topic objects
may be defined prior to application runtime and stored using a JNDI provider. An
application can then retrieve the JMS provider-specific objects from the JNDI context at
runtime and manipulate them using standard JMS interfaces. The MQSeries JMS
distribution provides a command line utility, JMSAdmin, that allows for the creation,
configuration and persisting of MQSeries JMS objects with various JNDI providers.

In order to use MQSeries as a transactional resource with WLS, an application must define
and manipulate WLS MQSeries XA connection factories. These WLS MQSeries XA
connection factories are based on the MQSeries XA connection factories and perform
operations specific to the WLS transaction manager. This section describes how to
administer MQSeries and WLS MQSeries JMS objects. Section 4 discusses how the WLS
MQSeries objects may be used in an application.

4

3.1 JMSAdmin
The following steps may be taken to configure MQSeries connection factories, queues and
topics using a third party JNDI provider. These procedures utilize the JMSAdmin command
line utility provided with the MQSeries Support Pac MA88: MQSeries classes for Java and
MQSeries classes for Java Message Service.

1. Modify the JMSAdmin configuration file, located at
%MQ_JAVA_INSTALL_PATH%\Java\bin\JMSAdmin.config, as appropriate for the
desired JNDI provider. The following is a sample configuration file for use with
Sun’s file system implementation (with comments removed for compactness).

INITIAL_CONTEXT_FACTORY=com.sun.jndi.fscontext.RefFSContextFactory
PROVIDER_URL=file:/C:/MQSeries/JNDI
SECURITY_AUTHENTICATION=none

2. Invoke JMSAdmin from the %MQ_JAVA_INSTALL_PATH%\Java\bin directory and
configure a XAQueueConnectionFactory object and a Queue object for use by the
sample application. Queue definitions should be defined as persistent to avoid losing
messages in the event of failure.

JMSAdmin
5648-C60 (c) Copyright IBM Corp. 1999. All Rights Reserved.
Starting MQSeries classes for Java(tm) Message Service Administration

InitCtx> DEFINE XAQCF(mqXAQCF)

InitCtx> DEFINE Q(mqQ) QUEUE(default) PERSISTENCE(PERS)

InitCtx> END

Stopping MQSeries classes for Java(tm) Message Service Administration

In order to use MQSeries as a transactional resource manager with the WLS TM, connection
factories must be defined as XA connection factories. If a non-XA connection factory is
employed by an application, updates to destinations using a Session obtained from the non-
XA connection factory will not participate in distributed transactions. In the event of failure,
data corruption could occur.

3.2 JNDIMapper
After the MQSeries JMS objects have been configured and stored with the JNDI provider,
the WLS MQSeries connection factories must be defined. These objects encompass
MQSeries XA connection factories and perform the necessary WLS TM registration and
dynamic enlistment operations. The helper class
weblogic.jms.foreign.mqseries.JNDIMapper retrieves MQSeries XA connection
factories from a third party JNDI context, creates WLS connection factories based on these
objects and stores them in the specified WLS JNDI context. The class has two methods that
copy objects from one provider context to the other.

5

public void map(String aMQName, String aWLName);
public void map(String aMQName, String aWLName, String aResourceName);

These map() methods store the object found at the specified foreign context in the local JNDI
context. If the object being stored is an MQSeries XAConnectionFactory then the
corresponding WLS factory is created and stored in the local context. Otherwise, a copy of
the object from the foreign context is stored. If the method with the resource name parameter
is invoked and the mapped object is a WLS connection factory, then the object’s resource
name attribute will be set accordingly.

The following JNDIMapper example shows how the helper class can be used in a WLS
startup class to create a WLS connection factory in the server’s local JNDI context. An
MQSeries Queue definition is also stored in the local context.

// from MQSeriesHelperImpl.java
public static void main(String[] argv) throws Exception
{
 // advertise in WLS JNDI
 MQSeriesHelperImpl impl = new MQSeriesHelperImpl();
 Context ctx = new InitialContext();
 ctx.bind("MQSeriesHelper", impl);
 ctx.close();
 System.out.println("*** MQSeriesHelper bound ***");

 // map MQSeries objects
 JNDIMapper mapper = new JNDIMapper(
 "com.sun.jndi.fscontext.RefFSContextFactory",
 "file://localhost/c:/mqseries/JNDI");
 mapper.map("mqXAQCF", "wlsmqXAQCF", "MQSeries");
 mapper.map("mqQ", "mqQ");
}

In the main method of the WLS startup class MQSeriesHelperImpl, the first section
advertises an instance of itself in the WLS JNDI context. The second section of the method
creates a JNDIMapper instance with the initial context factory and provider URL of the JNDI
provider that was used by JMSAdmin to store the MQSeries JMS objects. The first map()
method call creates a WLS connection factory, based on the MQSeries XA connection
factory found in the foreign JNDI context, with the resource name attribute of “MQSeries”.
The second call to map() simply copies the MQSeries queue definition from the foreign
provider context to the local JNDI context.

3.2.1 Resource Naming
The JNDIMapper.map(mqName, wlsName, resourceName) method associates a resource
name with the WLS connection factory that is created and stored in the local JNDI context.
When the connection factory is used in an application, MQSeries XAResource objects, which
are obtained from Session objects, are registered with the WLS TM under the specified
name. In the above example, the MQSeries connection factory stored under the context
“mqXAQCF” is used to create the WLS connection factory “wlsmqXAQCF” with a resource

6

name attribute of “MQSeries”. All QueueSession objects created from the connection
factory will be registered with the WLS TM under the “MQSeries” resource name. If a WLS
connection factory is created without an explicit resource name, then a default name is
generated and used for registration. This name is comprised of the MQSeries Queue
Manager name combined with the WLS domain name and server name. For example,
QM_hostname@domain+server.

Note that the WLS TM uses resource registration names to determine transaction branches.
If two resources are registered with the TM under the same name, then they will be treated as
the same logical branch of a transaction. In such a scenario, one of the resources will not
participate in the commit protocol. Care should be taken when assigning resource names to
avoid resource name collisions.

4 WLS MQSeries Classes
The WLS MQSeries classes implement the standard JMS interfaces. Instances of these
classes intercept application method invocations that update JMS destinations; such as send,
publish and receive operations; and perform dynamic enlistment with the WLS TM prior to
executing the actual MQSeries JMS operation.

The typical usage pattern is to define a WLS MQSeries XAConnectionFactory object that
wraps an MQSeries XAConnectionFactory object. This WLS-specific connection factory
might then be stored in a WLS JNDI context for use at application runtime. An application
would retrieve the connection factory and use it to create the appropriate connection, session,
producer and consumer objects. Each of these objects derived from the connection factory
will be a WLS MQSeries object that delegates method invocations to the corresponding
MQSeries implementation object.

4.1 Programming
This section describes how the MQSeries classes may be used by an application to perform
transactional updates to MQSeries destinations using standard JMS and JTA interfaces. The
following example makes use of an MQSeries queue destination. Note that exception
handling is omitted for readability.

4.1.1 Retrieving the MQSeries Connection Factory
As discussed in the Administering MQSeries JMS Objects section, a WLS MQSeries
connection factory may be stored prior to application runtime in a local WLS JNDI context.
An application then retrieves the connection factory at runtime, as shown below.

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY, WLS_ICF);
env.put(Context.PROVIDER_URL, WLS_PROVIDER_URL);
ctx = new InitialContext(env);
QueueConnectionFactory mqQCF =
 QueueConnectionFactory)ctx.lookup("wlsmqXAQCF");

7

In the above example, the WLS_ICF and WLS_PROVIDER_URL variables contain the WLS JNDI
initial context factory class name and provider URL, respectively. Alternatively, the
weblogic.jndi.Environment class may be used to obtain the local context, as follows.

Environment wlenv = new Environment();
ctx = wlenv.getInitialContext();
QueueConnectionFactory mqQCF =
 QueueConnectionFactory)ctx.lookup("wlsmqXAQCF");

Note that the JMS specification prescribes the use of “XA” classes methods to integrate with
a JTS/JTA provider. The WLS MQSeries classes do not require the use of these XA classes
and methods in order for MQSeries JMS to participate in distributed transactions with the
WLS TM. If a WLS connection factory is employed, then all MQSeries JMS operations will
participate in global transactions. In fact, using a WLS XA connection factory requires the
use of global transactions. If an MQSeries destination is accessed outside the scope of a
transaction then the MQSeries JMS exception JMSException: MQJMS2007 will be thrown.
Refer to the Troubleshooting section for more information.

4.1.2 Retrieving the MQSeries Queue
The following code sample shows retrieving the predefined MQSeries Queue definition from
the local JNDI context of the server.

Queue mqQueue = (Queue)ctx.lookup("mqQ");

4.1.3 Create Producer
The connection factory that was obtained from JNDI may be used to create the connection,
session and producer objects required to send a message to the MQSeries queue.

QueueConnection mqConn = mqQCF.createQueueConnection();
mqConn.start();
QueueSession mqSession = mqConn.createQueueSession(true,
 Session.AUTO_ACKNOWLEDGE);
QueueSender mqSender = mqSession.createSender(mqQueue);

The createQueueSession() method is shown here being called with the values of true for
the transacted parameter and Session.AUTO_ACKNOWLEDGE for the acknowledgeMode
parameter. These parameters are essentially ignored as internally a XASession object is
created from which the Session object is created that is then returned to the caller.
Alternately, the JMS XA methods may be used to create the connection, session and
producer objects as shown below. Note that if the getXAQueueSession() method is called
on the XAQueueConnection object, then an additional call to getQueueSession() on the
XAQueueSession object is required. The two approaches are essentially equivalent with
regard to the objects that are created internally and from the point of view of the WLS TM.

XAQueueConnection mqXAConn = mqQCF.createXAQueueConnection();
mqXAConn.start();
XAQueueSession mqXASession = mqConn.createXAQueueSession();
QueueSession mqSession = mqXASession.getQueueSession();
QueueSender mqSender = mqSession.createSender(mqQueue);

8

4.1.4 Sending a Message in a Transaction
Once the session and producer objects have been created, messages may be sent to the
MQSeries queue as part of a global transaction. The following example shows how to
retrieve a UserTransaction object, start a WLS transaction, send a message to an MQSeries
queue, and commit the transaction.

UserTransaction ut = (UserTransaction) ctx.lookup(
 "javax/transaction/UserTransaction");
ut.begin();
mqSender.send(msg);
ut.commit();

This example shows a single resource being accessed within the scope of a transaction. In
this situation the WLS TM will perform a one-phase commit optimization with MQSeries.

4.1.5 Threading Issues
According to the JMS specification, Session objects are not intended for concurrent access
across multiple threads. The WLS MQSeries classes have the restriction of single-threaded
session access. If two threads infected by two separate transactions access the same session
object, a javax.transaction.xa.XAException may result. Each server execute thread
should obtain its own session object before performing any MQSeries JMS operations in a
transaction.

4.1.6 Asynchronous Consumers
Asynchronous message delivery cannot participate in WLS global transactions. To use
asynchronous message delivery with WLS, a non-XA connection factory must be used to
create the session from which the consumer is created. Also, the MQSeries JMS
implementation requires that the MessageListener be assigned to the MessageConsumer
prior to starting the connection.

4.2 Example Application
This section describes how to configure and run the provided example application, listed at
the end of this document. The example consists of a WLS startup class, MQSeriesHelper,
and a client application that makes RMI calls to a startup class instance running in WLS.
The RMI methods perform transactional operations with MQSeries.

4.2.1 Building
The example may be built by compiling the three Java files; MQSeriesHelper.java,
MQSeriesHelperImpl.java, and MQClient.java ; and by running weblogic.rmic on the
MQSeriesHelperImpl class.

javac MQSeriesHelper.java MQSeriesHelperImpl.java MQClient.java
java weblogic.rmic -nomanglednames MQSeriesHelperImpl

9

Copy the resulting “.class” files to a directory that is in the CLASSPATH environment
variable.

4.2.2 Configuring and Starting WebLogic
A startup class definition must be added to the WLS configuration file. Add the following
entry to the config.xml file for the domain. Modify the Targets value to be the actual name
of the server being booted.

<StartupClass
 Name="MQSeriesHelper"
 Targets="serverName"
 ClassName="MQSeriesHelperImpl"/>

Add a WLS JMS Server definition to the configuration. Modify the Targets value to be the
actual name of the server being booted. Create a directory under the server directory named
myfilestore.

<JMSServer Name="TestJMSServer" Targets="serverName"
 Store="FileStore">
 <JMSQueue Name="WLSQueue" JNDIName="WLSQueue"/>
</JMSServer>

<JMSConnectionFactory Name="WLSCF" JNDIName="WLSCF"
 Targets="server1" UserTransactionsEnabled="true"
 XAConnectionFactoryEnabled="true"/>

 <JMSFileStore Name="FileStore" Directory="myfilestore"
 JMSServer="TestJMSServer"/>

The following environment properties may be defined at server startup to control how the
MQSeriesHelper object behaves with respect to JNDI providers, context names, etc. The
default values correspond to the configuration described in this document.

wlsmqs.mqs.icf The initial context factory for the MQSeries JNDI
provider. Default:
com.sun.jndi.fscontext.RefFSContextFactory

wlsmqs.mqs.providerurl The provider URL for the MQSeries JNDI provider.
Default: file://localhost/c:/mqseries/JNDI

wlsmqs.wls.icf The initial context factory for the WLS JNDI provider.
Default: weblogic.jndi.WLInitialContextFactory

wlsmqs.wls.providerurl The provider URL for the WLS JNDI provider. Default:
t3://localhost:7001

wlsmqs.mqs.mqxaqcf The context name of the MQSeries
XAQueueConnectionFactory stored in the MQSeries
JNDI provider. Default: mqXAQCF

wlsmqs.mqs.mqqueue The context name of the MQSeries Queue stored in the
MQSeries JNDI provider. Default: mqQ

wlsmqs.wls.mqxaqcf The context name of the WLS
XAQueueConnectionFactory stored in the WLS JNDI

10

context. Default: wlsmqXAQCF
wlsmqs.wls.resourcename The resource name to be assigned to the WLS

XAQueueConnectionFactory. Default: MQSeries
wlsmqs.wls.mqqueue The context name of the MQSeries Queue that is stored in

the local WLS JNDI context. Default: mqQ
wlsmqs.wls.qcf The context name of the WLS JMS

QueueConnectionFactory stored in the local context.
Default: WLSCF

wlsmqs.wls.queue The context name of the WLS JMS queue stored in the
local JNDI context. Default: WLSQueue

In order to modify the default configuration settings for the MQSeriesHelper object, define
the appropriate properties in the script used to boot WLS. For example, to change the WLS
provider URL to t3://localhost:8801, add the following java command-line.

java –Dwlsmqs.wls.providerurl=t3://localhost:8801 ... weblogic.Server

After changing the server configuration and updating the WLS startup script, start the server.

4.2.3 Invoking the Client
After the server has booted, invoke the MQClient client. The client makes RMI calls to the
MQSeriesHelper startup class to perform transactional MQSeries operations. The
application takes two arguments, the WLS server URL and a string message.

java MQClient t3://localhost:7001 "MQSeries test message"

The client will invoke the MQSeriesHelper object to enqueue a WLS JMS message within a
transaction. Another remote method is called to retrieve the message from the WLS JMS
queue and send it to the MQSeries queue within a transaction. Finally, the client invokes
another method to transactionally receive the message from the MQSeries queue.

Expected client output:

sending: "MQSeries test message"
received: "MQSeries test message"

Expected server output:

Bridged: "MQSeries test message"

4.2.4 Verify Transaction Participation
In order to determine if the MQSeries queue operations performed by running the example
actually participated in global transactions, check the statistics of the registered resources.
This may be performed by using the WLS Console and viewing the [domain] > Servers >
[server] > Monitoring > JTA > Transaction by Resource pane, or by running the

11

weblogic.Admin command-line utility. The utility may be invoked as follows, substituting
configuration-specific values for the url, username and password arguments:

java weblogic.Admin –url t3://localhost:7001 \
–username system –password gumby1234 \
GET –pretty –type TransactionResourceRuntime

The output of this command displays the TransactionResourceRuntime MBeans that
represent registered resources with the WLS TM. The attributes of these MBeans are
primarily statistics that indicate the number of transactions processed, and how many were
committed, rolled back, etc. After running the example application, the output should look
something like the following.

MBeanName:
"qa:Location=server1,Name=JTAResourceRuntime_MQSeries,ServerRuntime=server
1,Type=TransactionResourceRuntime"
 CachingDisabled: true
 Name: JTAResourceRuntime_MQSeries
 ObjectName: JTAResourceRuntime_MQSeries
 Registered: false
 ResourceName: MQSeries
 TransactionCommittedTotalCount: 2
 TransactionHeuristicCommitTotalCount: 0
 TransactionHeuristicHazardTotalCount: 0
 TransactionHeuristicMixedTotalCount: 0
 TransactionHeuristicRollbackTotalCount: 0
 TransactionHeuristicsTotalCount: 0
 TransactionRolledBackTotalCount: 0
 TransactionTotalCount: 2
 Type: TransactionResourceRuntime

MBeanName:
"qa:Location=server1,Name=JTAResourceRuntime_JMS_FileStore,ServerRuntime=s
erver1,Type=TransactionResourceRuntime"
 CachingDisabled: true
 Name: JTAResourceRuntime_JMS_FileStore
 ObjectName: JTAResourceRuntime_JMS_FileStore
 Registered: false
 ResourceName: JMS_FileStore
 TransactionCommittedTotalCount: 2
 TransactionHeuristicCommitTotalCount: 0
 TransactionHeuristicHazardTotalCount: 0
 TransactionHeuristicMixedTotalCount: 0
 TransactionHeuristicRollbackTotalCount: 0
 TransactionHeuristicsTotalCount: 0
 TransactionRolledBackTotalCount: 0
 TransactionTotalCount: 2
 Type: TransactionResourceRuntime

There are two MBeans displayed in the above output; one for the MQSeries resource and one
for the WLS JMS file store. Each MBean should have the value of two for both the
TransactionTotalCount and TransactionCommittedTotalCount attributes. These values

12

will increase by two each time the example is executed. The WLS JMS resource participates
in two transactions, a one-phase transaction to enqueue the initial message and a two-phase
transaction to dequeue as part of the transfer to the MQSeries queue. The MQSeries JMS
resource also participates in two transactions, a two-phase transaction to transfer a message
from the WLS JMS queue to the MQSeries queue and a one-phase transaction to dequeue
from the MQSeries queue.

5 Restrictions and Limitations
The following limitations and restrictions apply when utilizing MQSeries JMS with WLS.

• The MQSeries JMS integration with WLS is only supported with the IBM MQSeries
JMS driver. The MQSeries Base Java driver is not supported.

• The MQSeries JMS integration with WLS was tested using the “bindings” connection
mode only. The MQSeries JMS driver does not provide support for distributed
transactions in the “client” connection mode. For a discussion of MQSeries driver
connection modes, refer to [2], Part 1, Chapter 1, Connection options.

• MQSeries destinations must be accessed from applications components running in WLS
in order for updates to participate in distributed transactions. Server components include
such constructs as startup classes, RMI objects, EJBs, servlets, etc. This restriction is due
to the WLS requirement that resource managers only be registered on a server instance.
Client applications may update MQSeries destinations outside of a global transaction by
using the standard MQSeries connection factories.

• Message Driven Beans cannot be invoked from an MQSeries destination as part of a
WLS distributed transaction. Refer to [6], “Can you use a foreign JMS provider to drive
an MDB transactionally?” for more information.

• Multiple sessions derived from the same MQSeries XA connection factory should not be
used in the same transaction. If multiple sessions to the same MQSeries Queue Manager
must be used, define separate XA connection factories and assign unique resource name
attributes.

• Consideration should be given to the following MQSeries restrictions from “MQSeries
System Administration, Part 1, Chapter 14, External syncpoint coordination”:

• Only one queue manager at a time may participate in a transaction coordinated by
an instance of an external syncpoint coordinator: the syncpoint coordinator is
effectively connected to the queue manager, and is therefore subject to the rule
that only one connection at a time is supported.

• A queue manager whose resource updates are coordinated by an external
syncpoint coordinator must be started before the external syncpoint coordinator
starts. Similarly, the syncpoint coordinator must be ended before the queue
manager is ended.

13

• If you are using an external syncpoint coordinator that terminates abnormally, you
should stop and restart your queue manager before restarting the syncpoint
coordinator to ensure that any messaging operations uncommitted at time of the
failure are properly resolved.

6 Troubleshooting
This section describes common problems when using MQSeries JMS with WLS.

1. Producer/Consumer operation results in JMSException: javax.jms.JMSException:
MQJMS2007: failed to send message to MQ queue, Linked exception:
com.ibm.mq.MQException: Completion Code 2, Reason 2072
(MQRC_SYNCPOINT_NOT_AVAILABLE)
• This indicates that a MQSeries JMS operation was performed outside of a global transaction while using an

XASession. All XASession producer/consumer operations must be invoked within a global transaction.

7 Glossary

Coordinator The entity that drives the two-phase commit protocol.
Distributed Transaction A global transaction involving two or more resources

across one or more server instances.
Dynamic Enlistment Transaction enlistment of a resource that happens only

when the resource is accessed.
Global Transaction A transaction that is managed by a transaction manager

and is associated with a thread of control. It may
encompass one or more participating resources that are
infected with the transaction when they are accessed by an
application component. The transaction manager
coordinates the commit processing using the two-phase
commit protocol.

One-phase Commit An optimization of the two-phase commit protocol
whereby the prepare phase is skipped when there is only
one participating resource.

Resource Manager An entity that manages persistent data, such as a queuing
system or database, which can participate in two-phase
commit transactions.

Resource Registration The mechanism whereby a resource manager is registered
with a transaction manager.

Static Enlistment Transaction enlistment of a resource that occurs whenever
a transaction is started or becomes active in a thread. This
type of enlistment is typically only used with resources
that do not support dynamic enlistment.

Transaction Enlistment The mechanism whereby a resource manager is associated
with the transaction context of the caller.

Transaction Manager Process that manages the transaction lifecycle and
subordinate resources, and coordinates the two-phase

14

commit protocol. Also referred to in the MQSeries
documentation as an external Syncpoint Coordinator.

Two-phase Commit A protocol for ensuring that updates to multiple resource
managers, within the scope of a transaction, are
permanently stored or abandoned as a unit. A coordinator
instructs each transaction participant to prepare. If any
participant responds negatively, the transaction will be
aborted (rolled back) and each participant will be notified
to revert its changes. If all participants agree, the
coordinator will write a commit record to permanent store.
At this point the transaction is committed. The
coordinator is then responsible for informing each
participating resource of the outcome so that its changes
will be made durable.

8 References and Related Documents

[1] Using foreign JMS providers with WLS, BEA Deve loper Center,
http://developer.bea.com/docs/jmsproviders.jsp

[2] Using Java, MQSeries Manuals, IBM Corporation, Document Number SC34-5456-05

[3] MQSeries System Administration, Second edition (March 1999), IBM Corporation

[4] Java Transaction API (JTA) Specification (http://java.sun.com/products/jta)

[5] X/Open CAE Specification – Distributed Transaction Processing: The XA
Specification, X/Open Document No. XO/CAE/91/300 or ISBN 1 872630 24 3

[6] WebLogic Server 6.1 JMS FAQ, http://e-docs.bea.com/wls/docs61/faq/jms.html

9 Example Source Code

MQSeriesHelper.java:

import weblogic.rmi.Remote;
import weblogic.rmi.RemoteException;

/**
 * Remote interface for the MQSeriesHelper startup-class/RMI object.
 */
public interface MQSeriesHelper extends Remote
{
 /**
 * Sends a TextMessage to a WLS queue transactionally.

15

 */
 void sendWLSMessage(String msg) throws RemoteException;

 /**
 * For the number of messages specified, starts a transaction
 * dequeues from WLS queue, enqueues message to MQSeries
 * queue and commits the transaction.
 */
 void bridgeWLS2MQS(int numMsgs) throws RemoteException;

 /**
 * Receives a message from an MQSeries queue and returns
 * the text.
 */
 String receiveMQMessage() throws RemoteException;
}

MQSeriesHelperImpl.java:

import java.util.Hashtable;
import javax.jms.Message;
import javax.jms.Queue;
import javax.jms.QueueReceiver;
import javax.jms.QueueSender;
import javax.jms.QueueSession;
import javax.jms.Session;
import javax.jms.TextMessage;
import javax.jms.XAQueueConnection;
import javax.jms.XAQueueConnectionFactory;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.transaction.UserTransaction;
import weblogic.jms.foreign.mqseries.JNDIMapper;
import weblogic.jndi.Environment;
import weblogic.rmi.RemoteException;
import weblogic.transaction.TxHelper;

/**
 * Implementation of the MQSeriesHelper startup-class/remote interface.
 * When the startup class is invoked during server boot, an instance
 * will be bound in the local JNDI context and MQSeries objects will
 * be copied from the MQSeries JNDI provider to the local context.
 * As part of the mapping of JMS objects a WLS MQSeries
 * XAQueueConnectionFactory will be created with the specified
 * resource name attribute.
 */
public class MQSeriesHelperImpl implements MQSeriesHelper {

 private static String mqICF;
 private static String mqProviderURL;
 private static String wlICF;
 private static String wlProviderURL;
 private static String mqMQXAQCFName;
 private static String mqMQQueueName;
 private static String wlMQXAQCFName;

16

 private static String wlMQQueueName;
 private static String wlQCFName;
 private static String wlQueueName;
 private static String wlResourceName;

 /**
 * Invoked during server boot. Registers instance in local
 * WLS JNDI context to serve RMI requests. Reads system properties
 * if any to override default settings. Binds MQSeries object in
 * local JNDI context.
 */
 public static void main(String[] argv) throws Exception
 {
 // advertise in WLS JNDI
 MQSeriesHelperImpl impl = new MQSeriesHelperImpl();
 Context ctx = new InitialContext();
 ctx.bind("MQSeriesHelper", impl);
 ctx.close();
 System.out.println("*** MQSeriesHelper bound ***");

 getSystemProperties();

 // map MQSeries objects
 JNDIMapper mapper = new JNDIMapper(mqICF, mqProviderURL);
 mapper.map(mqMQXAQCFName, wlMQXAQCFName, wlResourceName);
 mapper.map(mqMQQueueName, wlMQQueueName);
 }

 /**
 * @see MQSeriesHelper#sendWLSMessage
 */
 public void sendWLSMessage(String msgText) throws RemoteException
 {
 JMSObject wljms = null;
 QueueSession session = null;
 QueueSender sender = null;

 try {
 wljms = new JMSObject(wlICF, wlProviderURL, wlQCFName,
 wlQueueName);

 session = wljms.getSession();
 sender = wljms.getSender();

 TextMessage msg = session.createTextMessage();
 msg.setText(msgText);

 UserTransaction ut = getUserTransaction();

 ut.begin();
 sender.send(msg);
 ut.commit(); // 1PC

 } catch (Exception e) {
 System.err.println(e.toString());
 e.printStackTrace();
 throw new RemoteException(e.toString(), e);

17

 } finally {
 wljms.cleanup();
 }
 }

 /**
 * @see MQSeriesHelper#bridgeWLS2MQS
 */
 public void bridgeWLS2MQS(int numMsgs) throws RemoteException
 {
 JMSObject wljms = null;
 QueueReceiver wlReceiver = null;
 JMSObject mqjms = null;
 QueueSender mqSender = null;
 UserTransaction ut = getUserTransaction();

 try {
 wljms = new JMSObject(wlICF, wlProviderURL, wlQCFName,
 wlQueueName);
 wlReceiver = wljms.getReceiver();

 mqjms = new JMSObject(wlICF, wlProviderURL, wlMQXAQCFName,
 wlMQQueueName);
 mqSender = mqjms.getSender();

 for (int i=0; i<numMsgs; i++) {
 ut.begin();
 Message msg = wlReceiver.receive();
 mqSender.send(msg);
 ut.commit(); // 2PC
 if (msg instanceof TextMessage) {
 System.out.println("bridged: \"" + ((TextMessage)msg).getText() +
 "\"");
 }
 }
 } catch (Exception e) {
 e.printStackTrace();
 throw new RemoteException(e.toString(), e);
 } finally {
 if (wljms != null) wljms.cleanup();
 if (mqjms != null) mqjms.cleanup();
 }
 }

 /**
 * @see MQSeriesHelper#receiveMQMessage
 */
 public String receiveMQMessage() throws RemoteException
 {
 JMSObject mqjms = null;
 QueueSession session = null;
 QueueReceiver receiver = null;

 try {
 mqjms = new JMSObject(wlICF, wlProviderURL, wlMQXAQCFName,
 wlMQQueueName);

18

 session = mqjms.getSession();
 receiver = mqjms.getReceiver();

 UserTransaction ut = getUserTransaction();

 ut.begin();
 Message msg = receiver.receive();
 ut.commit(); // 1PC

 if (msg == null || !(msg instanceof TextMessage)) {
 return "[not a TextMessage]";
 }

 TextMessage textMsg = (TextMessage)msg;
 return textMsg.getText();
 } catch (Exception e) {
 e.printStackTrace();
 throw new RemoteException(e.toString(), e);
 } finally {
 mqjms.cleanup();
 }
 }

 private static void getSystemProperties()
 {
 mqICF = System.getProperty(
 "wlsmqs.mqs.icf", "com.sun.jndi.fscontext.RefFSContextFactory");
 mqProviderURL = System.getProperty(
 "wlsmqs.mqs.providerurl", "file://localhost/c:/mqseries/JNDI");
 wlICF = System.getProperty(
 "wlsmqs.wls.icf", "weblogic.jndi.WLInitialContextFactory");
 wlProviderURL = System.getProperty(
 "wlsmqs.wls.providerurl", "t3://localhost:7001");

 mqMQXAQCFName = System.getProperty("wlsmqs.mqs.mqxaqcf", "mqXAQCF");
 mqMQQueueName = System.getProperty("wlsmqs.mqs.mqqueue", "mqQ");

 wlMQXAQCFName = System.getProperty("wlsmqs.wls.mqxaqcf", "wlsmqXAQCF");
 wlResourceName = System.getProperty("wlsmqs.wls.resourcename",
 "MQSeries");
 wlMQQueueName = System.getProperty("wlsmqs.wls.mqqueue", "mqQ");

 wlQCFName = System.getProperty(
 "wlsmqs.wls.qcf", "WLSCF");
 wlQueueName = System.getProperty(
 "wlsmqs.wls.queue", "WLSQueue");
 }

 private UserTransaction getUserTransaction()
 {
 // could also do JNDI lookup of javax.transaction.UserTransaction
 // in local WLS context
 return TxHelper.getUserTransaction();
 }

 class JMSObject
 {

19

 private InitialContext ctx;
 private Queue queue;
 private XAQueueConnection connection;
 private XAQueueConnectionFactory factory;
 private QueueReceiver queueReceiver;
 private QueueSender queueSender;
 private QueueSession session;

 JMSObject(String icf, String url, String qcf, String qname)
 throws Exception
 {
 // Get the initial context
 Hashtable env = new Hashtable();
 env.put(Context.INITIAL_CONTEXT_FACTORY, icf);
 env.put(Context.PROVIDER_URL, url);
 env.put(Context.REFERRAL, "throw");
 ctx = new InitialContext(env);
 factory = (XAQueueConnectionFactory)ctx.lookup(qcf);

 connection = factory.createXAQueueConnection();
 session = connection.createXAQueueSession().getQueueSession();
 queue = (Queue)ctx.lookup(qname);
 connection.start();
 queueSender = session.createSender(queue);
 queueReceiver = session.createReceiver(queue);
 }

 QueueSession getSession()
 {
 return session;
 }

 QueueSender getSender()
 {
 return queueSender;
 }

 QueueReceiver getReceiver()
 {
 return queueReceiver;
 }

 void cleanup()
 {
 try {
 queueSender.close();
 queueReceiver.close();
 session.close();
 connection.close();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 }
}

20

MQClient.java:

import weblogic.jndi.Environment;

/**
 * A simple RMI client that invokes the MQSeriesHelper startup-class/
 * RMI object to transactionally send and receive TextMessages to and
 * from WLS and MQSeries queues using standard JMS interfaces.
 */
public class MQClient
{
 /**
 * After obtaining a stub to the MQSeriesHelper RMI object in the
 * specified WLS server, three remote methods are invoked. The first
 * method enqueues a TextMessage, based on the provided string, to a
 * WLS queue in a one-phase transaction. The second method, within
 * the scope of a transaction, receives the message from the WLS queue
 * and sends it to an MQSeries queue (two-phase commit). The third
 * method call receives the message from the MQSeries queue in a
 * one-phase transaction.
 * <p>
 * Usage: java MQClient serverURL messageText
 */
 public static void main(String[] argv) throws Exception
 {
 String serverURL = null;
 String messageText = null;
 if (argv.length != 2) {
 System.out.println(
 "usage: java MQClient <serverURL> <messageText>");
 System.exit(1);
 }
 serverURL = argv[0];
 messageText = argv[1];

 // lookup RMI object
 Environment env = new Environment();
 env.setProviderUrl(serverURL);
 Context ctx = env.getInitialContext();
 MQSeriesHelper helper = (MQSeriesHelper)
 ctx.lookup("MQSeriesHelper");

 System.out.println("sending: \"" + messageText + "\"");

 // enqueue message string to WLS queue
 helper.sendWLSMessage(messageText);

 // dequeue from WLS queue and enqueue to MQSeries queue
 helper.bridgeWLS2MQS(1);

 // dequeue message from MQSeries queue
 System.out.println("received: \"" + helper.receiveMQMessage() +
 "\"");
 }
}

21

