Using MQSeries as a Transactional Resource Manager with
WebLogic Server

Version 1.0
October 25, 2001

Copyright
Copyright © 2001 BEA Systems, Inc. All Rights Reserved.
October 25, 2001

Restricted Rights Legend

This document may not, in whole or in part, be photocopied, reproduced, trandated, or
reduced to any electronic medium or machine readable form without prior consent, in
writing, from BEA Systems, Inc. Information in this document is subject to change without
notice and does not represent a commitment on the part of BEA Systems, Inc.

Limitation of Liability

BEA Systems, Inc. assumes no liability for use or misuse of the information contained in this
document. No guarantee is made as to the accuracy or correctness of the information
contained herein. This document falls under the limitation of liability in the WebL ogic Server
license document.

Trademarks

BEA, WebL ogic and Tuxedo are registered trademarks of BEA Systems, Inc. BEA

WebL ogic Server, BEA WebL ogic E-Business Platform, BEA WebL ogic Integration, BEA
WebL ogic Portal, BEA WebL ogic Commerce Server, BEA WebL ogic Personalization
Server, and BEA Campaign Manager for WebL ogic, are trademarks of BEA Systems.

All other trademarks are the properties of their respective owners.

Contents

W IN =

I~

IOlI0 INIo 101

1o [0t) 1
Configuring MOSeries for Use with WebLOGIC SENVEN......ccueiiivee i 1
Administering MOSENeS IMS ODJECES.......uuuiiiiiiiiiicciiiee et arre e 3
1 T A |V 17X 11 PSP 4
I N[V - o= USRI 4
3.21 RESOUICE NAIMING......uviiiitie ittt e s sbe e e sab e e s sab e e s sabe s s sabeessnreas 5
WL S MOSENTES CIASSES. .. uveiiiiitttiieiiitreie s e sttt e sttt e s s s sabe e s s s sbr e e e s saabaeessesbbaeessssbaeesssasssnessans 6
4.1 PrOQraIMIMING....cceeoeeeeesteeseesseesseeseeseesseessssseessesssesseessesssesseessesssesssessesssessesseessesseesses 6
411 Retrieving the MQSeries Connection FaCtory.........cocvvceeeicveeeicieecsieecevee e 6
41.2 Retrieving the MOSENTES QUEUEuvveeeiiiriieieiireee e siitree e esiree e s s sbaeeesssasaeeesns 7
41.3 (O1= (S (00 (U=, TR 7
414 Sending aMessage in @ TranNSaCtiON........cveeeivie e 8
415 1= o (110l S U= 8
4.1.6 ASYNCHIONOUS CONSUMENS....ciiiirreieiiiirieessirreeessssberessssaseessssssesssassssessssssssssssans 8
4.2 e 00 T AN o] o L o= (T o] R 8
421 U1 o T T 8
4.2.2 Configuring and Starting WEeDLOGIC.......ccooouviiiiiiieiec et 9
4.2.3 [NVOKING thE ClIEML ..vvviei ittt e e e e s re e s s s b e e e s s sabbee s s seareeeesns 10
424 Verify Transaction PartiCipation.........ccueeeceeeiieee i sree e 10
Restrictions and LiMITAHIONS.vueiiiiiiieeciiireee e csreee e estree e sebre e e s e ssbae e s s sbre e s s ssabreeessnsrneeas 12
QLN C0 0011 70T (1 oo R 13
(€ 0TS /USSR 13
References and Related DOCUMENES.ociiiuiiie ittt esirae e s svre e s erre e e s snraee s 14
EXAMPIE SOUMCE COUB........eeeiieicieie ettt s s b e s s e sbb e e e s s sbre e e s seabee e e s anbaeeas 14

1 Introduction

The MQSeries Java Messaging Service (JMS) driver may be used to incorporate MQSeries
as aresource manager in WebL ogic Server (WLYS) distributed transactions. This document
describes a set of support classes, utilities and techniques for utilizing MQSeries IMS with
WLS.

Because the MQSeries IMS driver transaction support is generic with respect to external
transaction managers, it is necessary to provide a layer of abstraction between the MQSeries
JMS implementation and WL S to perform such application server specific functions as
resource registration and dynamic transaction enlistment. This integration layer manages the
interaction of the MQSeries resource manager with the WL S Transaction Manager (TM).
Since the integration layer conforms to standard JM S interfaces, applications maintain
portability.

In addition to the integration layer, a helper-class is provided to create and configure WLS-
specific MQSeries connection factories based on previously configured MQSeries
connection factories. The utility retrieves MQSeries IM S objects from the specified Java
Naming and Directory Interface ™ (JNDI) context, creates the appropriate WLS MQSeries
JMS objects, and places them in the INDI context of an active WL S for use by application
components.

The following sections describe how to configure MQSeries for use with WLS, how to
administer MQSeries M S objects and how to manipulate these objects at runtime within the
scope of aglobal WLS transaction. Also, guidelines for verifying MQSeries transaction
participation are presented. Throughout the following sections a simple example is presented
that illustrates various configuration and programming issues. The example is comprised of
aWLS startup class that services RMI requests to perform MQSeries work transactionally.
Note that the example involves IMS queues, however the concepts and procedures are also
applicable to IMS topics.

2 Configuring MQSeries for Use with WebLogic Server

This section describes at a high level how to configure MQSeries for use with WLS. For
additional information, refer to [2].

1. Install MQSeries 5.2. A 60-day evaluation copy for Windows NT and Windows
2000 isavailable at http://www.ibm.com/software/tsymgseries/downloads. Follow the
appropriate installation procedures for the target operating system.

2. Download and install the MQSeries SupportPac MA88: MQSeries classes for Java
and MQSeries classes for Java Message Service from
http://www.ibm.com/software/ts/mgseries/txppacs/ma88.html.

3. For utilizing Topics, download and install the MQSeries SupportPac MAOC:
MQSeries - Publish/Subscribe from
http://www.ibm.com/software/ts/magseri es/txppacs/malc.html

4. Add the following settings to the WLS environment scripts (startWebL ogic.cmd and
setEnv.cmd).

set MQ I NSTALL_PATH=[path of MXSeries installation]

e.g. c:\Program Fil es\ MXSeri es
set MQ JAVA_ | NSTALL_PATH=[path of Java installation]

e.g. c:\Program Fil es\ MXeri es
set WS MQ JAVA | NSTALL_PATH=[path of WS MXeries installation]

e.g. c:\W.SMXeries
set
CLASSPATH=%CLASSPATHY) %V _JAVA_| NSTALL_PATH% Java\ sanpl es\ base; %viQ J
AVA | NSTALL_PATH% j ava\li b\com i bm ng.j ar; %vMQ JAVA | NSTALL_PATH% j av
a\lib\comibmnmgjns.jar; ¥ JAVA | NSTALL_PATH% j ava\lib\jns.jar; %vVQ_
JAVA | NSTALL_PATH% j ava\lib\jndi.jar; %vQ JAVA | NSTALL PATH%W java\lib
\fscontext.jar; %MQ JAVA | NSTALL_PATH% j ava\li b\ providerutil.jar;%Q_
JAVA | NSTALL_PATH% j ava\l i b\ connector.jar; %S MQ JAVA | NSTALL_ PATH%
\lib\wW sngseries.jar
set
PATH=%ATHY %vQ_JAVA_ | NSTALL_PATH% bi n; ¥MQ JAVA | NSTALL_PATH% j ava\ b
in; %VQ JAVA | NSTALL_PATH% java\lib

Invokeset Env. cnd

5. Start the Queue Manager

strmgm QM _host nane

6. Runthe runmqsc utility to define a sample channel called JAVA.CHANNEL
DEF CHL(' JAVA. CHANNEL') CHLTYPE(SVRCONN) TRPTYPE(TCP) MCAUSER(' ')
DESCR(' Sanpl e')

END
7. Start the listener process

start runnglsr -t tcp -p 1414 -m QM _host nane

8. Test the instalation:
java MJ VP

Output follows:

MXSeries for Java Installation Verification Program
5639-B43 (C) Copyright I1BM Corp. 1997, 1998. All Rights Reserved.

Pl ease enter the type of connection (MXeries or VisiBroker) : (MXeries)

Pl ease enter the | P address of the MQSeries server : |l ocal host

Pl ease enter the port to connect to : (1414)

Pl ease enter the server connection channel nane : JAVA. CHANNEL
Pl ease enter the queue manager nane :

Success: Connected to queue nmanager.

Success: Opened SYSTEM DEFAULT. LOCAL. QUEUE

Success: Put a nessage to SYSTEM DEFAULT. LOCAL. QUEUE

Success: Got a nessage from SYSTEM DEFAULT. LOCAL. QUEUE

Success: Cl osed SYSTEM DEFAULT. LOCAL. QUEUE

Success: Di sconnected from queue manager

Tests conplete -
SUCCESS: This MXeries Transport is functioning correctly.
Press Enter to continue...

9. To utilize Topics, start the Pub/Sub Broker

strmgbrk -m QM _host nane

where QM_hostname is the name of the queue manager created at installation time.
Verify that the broker is active by running:

dspngbrk -m QM _host nane

Then set up the necessary system queues once by running the following script in the
9%VQ_JAVA_| NSTALL_PATH% j ava\ bi n directory.

runngsc QM host nane < MQMS_PSQ nygsc

3 Administering MQSeries JMS Objects

To help achieve application portability, JIM S connection factories, queues and topic objects
may be defined prior to application runtime and stored using a JNDI provider. An
application can then retrieve the IM S provider-specific objects from the INDI context at
runtime and manipulate them using standard IMS interfaces. The MQSeries IMS
distribution provides a command line utility, JMSAdni n, that alows for the creation,
configuration and persisting of MQSeries IM S objects with various INDI providers.

In order to use MQSeries as a transactional resource with WLS, an application must define
and manipulate WLS MQSeries XA connection factories. These WLS MQSeries XA
connection factories are based on the MQSeries XA connection factories and perform
operations specific to the WLS transaction manager. This section describes how to
administer MQSeries and WLS MQSeries IMS objects. Section 4 discusses how the WLS
MQSeries objects may be used in an application.

3.1 JMSAdmin

The following steps may be taken to configure MQSeries connection factories, queues and
topics using athird party JNDI provider. These procedures utilize the JMsAdni n command
line utility provided with the MQSeries Support Pac MA88: MQSeries classes for Java and
MQSeries classes for Java Message Service.

1. Modify the IMsAdni n configuration file, located at
9%vQ_JAVA_| NSTALL_PATH Java\ bi n\ JMSAdmi n. confi g, as appropriate for the
desired JNDI provider. The following is a sample configuration file for use with
Sun’s file system implementation (with comments removed for compactness).

I NI TI AL_CONTEXT_FACTORY=com sun. j ndi . f scont ext . Ref FSCont ext Factory
PROVI DER_URL=fi | e: / C. / MQXSeri es/ JNDI
SECURI TY_AUTHENTI CATI ON=none

2. Invoke JMsAdmi n from the %viQ_JAVA_| NSTALL_PATH% Javal\ bi n directory and
configure aXAQueueConnect i onFact or y object and a Queue object for use by the
sample application. Queue definitions should be defined as persistent to avoid losing
messages in the event of failure.

JMSAdm n
5648- C60 (c) Copyright 1BM Corp. 1999. Al Rights Reserved.
Starting MXBeries classes for Java(tm Message Service Adm nistration

I ni t Ct x> DEFI NE XAQCF(nXAQCF)
InitCtx> DEFI NE QmgQ QUEUE(default) PERSI STENCE(PERS)
InitCtx> END

St oppi ng MXSeries classes for Java(tm Message Service Adm nistration

In order to use MQSeries as a transactional resource manager with the WLS TM, connection
factories must be defined as XA connection factories. 1f anon-XA connection factory is
employed by an application, updates to destinations using a Sessi on obtained from the non-
XA connection factory will not participate in distributed transactions. In the event of failure,
data corruption could occur.

3.2 JNDIMapper

After the MQSeries IMS objects have been configured and stored with the INDI provider,
the WL S MQSeries connection factories must be defined. These objects encompass
MQSeries XA connection factories and perform the necessary WLS TM registration and
dynamic enlistment operations. The helper class

webl ogi c. j ms. f orei gn. ngseri es. JNDI Mapper retrieves MQSeries XA connection
factories from athird party JNDI context, creates WL S connection factories based on these
objects and stores them in the specified WLS JNDI context. The class has two methods that
copy objects from one provider context to the other.

public void map(String aMNane, String aW.Nane);
public void map(String aMNanme, String aW.Nane, String aResourceNane);

These map() methods store the object found at the specified foreign context in the local INDI
context. If the object being stored is an MQSeries XAConnect i onFact ory then the
corresponding WL S factory is created and stored in the local context. Otherwise, a copy of
the object from the foreign context is stored. If the method with the resource name parameter
is invoked and the mapped object is a WLS connection factory, then the object’s resource
name attribute will be set accordingly.

The following JNDI Mapper example shows how the helper class can be used in aWLS
startup class to create a WL S connection factory in the server’slocal INDI context. An
MQSeries Queue definition is aso stored in the local context.

/1 from MXeriesHel perlnpl.java
public static void main(String[] argv) throws Exception

{
/] advertise in WS JNDI

MSeri esHel perlnmpl inpl = new MXSeri esHel perlnpl ();
Context ctx = new Initial Context();

ct x. bi nd(" MXSeri esHel per", inpl);

ctx.close();

Systemout.println("*** MXeriesHel per bound ***");

/1 map MQSeries objects
JNDI Mapper mapper = new JNDI Mapper (
"com sun. j ndi . fscont ext. Ref FSCont ext Fact ory",
"file://local host/c:/mseries/JND");
mapper. map(" mMXAQCF", "w snmXAQCF", "MSeries");
} mapper. map("ngQ', "nQ');

In the main method of the WLS startup class MSer i esHel per I npl , the first section
advertises an instance of itself in the WLS JNDI context. The second section of the method
creates a JNDI Mapper instance with the initial context factory and provider URL of the JNDI
provider that was used by JMsAdni n to store the MQSeries IMS objects. Thefirst map()
method call creates a WL S connection factory, based on the MQSeries XA connection
factory found in the foreign JINDI context, with the resource name attribute of “MQSeries’.
The second call to map() simply copies the MQSeries queue definition from the foreign
provider context to the local INDI context.

3.2.1 Resource Naming

The JNDI Mapper . map(mgNanme, w sNane, resourceNanme) method associates aresource
name with the WLS connection factory that is created and stored in the local INDI context.
When the connection factory is used in an application, MQSeries XAResour ce oObjects, which
are obtained from Sessi on objects, are registered with the WLS TM under the specified
name. In the above example, the MQSeries connection factory stored under the context
“mgXAQCF” is used to create the WLS connection factory “wlsmgXAQCF” with a resource

name attribute of “MQSeries’. All QueueSessi on objects created from the connection
factory will be registered with the WLS TM under the “MQSeries’ resource name. If aWLS
connection factory is created without an explicit resource name, then a default name is
generated and used for registration. This name is comprised of the MQSeries Queue
Manager name combined with the WL S domain name and server name. For example,

QM _hostname@domai n+ server.

Note that the WLS TM uses resource registration names to determine transaction branches.

If two resources are registered with the TM under the same name, then they will be treated as
the same logical branch of atransaction. In such a scenario, one of the resources will not
participate in the commit protocol. Care should be taken when assigning resource names to
avoid resource name collisions.

4 WLS MQSeries Classes

The WLS MQSeries classes implement the standard IMS interfaces. Instances of these
classes intercept application method invocations that update JM S destinations; such as send,
publish and receive operations; and perform dynamic enlistment with the WLS TM prior to
executing the actual MQSeries JM S operation.

The typical usage pattern is to define a WLS MQSeries XAConnect i onFact ory object that
wraps an MQSeries XAConnect i onFact ory object. This WL S-specific connection factory
might then be stored in aWLS JNDI context for use at application runtime. An application
would retrieve the connection factory and use it to create the appropriate connection, session,
producer and consumer objects. Each of these objects derived from the connection factory
will be aWLS MQSeries object that del egates method invocations to the corresponding

M QSeries implementation object.

4.1 Programming

This section describes how the MQSeries classes may be used by an application to perform
transactional updates to MQSeries destinations using standard IMS and JTA interfaces. The
following example makes use of an MQSeries queue destination. Note that exception
handling is omitted for readability.

4.1.1 Retrieving the MQSeries Connection Factory

As discussed in the Administering MQSeries JMS Objects section, aWLS MQSeries
connection factory may be stored prior to application runtime in alocal WLS JNDI context.
An application then retrieves the connection factory at runtime, as shown below.

Hasht abl e env = new Hasht abl e();
env. put (Cont ext. | NI TI AL_CONTEXT_FACTORY, WS |ICF);
env. put (Cont ext . PROVI DER_URL, W.S PROVI DER URL);
ctx = new Initial Context(env);
QueueConnecti onFactory mqQCF =

QueueConnecti onFactory) ct x. | ookup("w smXAQCF") ;

In the above example, the w.s_I CF and W.S_PROVI DER_URL Variables contain the WLS JNDI
initial context factory class name and provider URL, respectively. Alternatively, the
webl ogi c. j ndi . Envi ronment class may be used to obtain the local context, as follows.

Envi ronnent W env = new Envi ronment () ;
ctx = wenv.getlnitial Context();
QueueConnecti onFactory mQCF =
QueueConnecti onFactory) ct x. | ookup("w smXAQCF") ;

Note that the IM S specification prescribes the use of “XA” classes methods to integrate with
aJTSJTA provider. The WLS MQSeries classes do not require the use of these XA classes
and methods in order for MQSeries IM S to participate in distributed transactions with the
WLS TM. If aWLS connection factory is employed, then all MQSeries IMS operations will
participate in global transactions. In fact, using a WLS XA connection factory requires the
use of global transactions. If an MQSeries destination is accessed outside the scope of a
transaction then the MQSeries IM S exception JM SException: MQJIM S2007 will be thrown.
Refer to the Troubleshooting section for more information.

4.1.2 Retrieving the MQSeries Queue

The following code sample shows retrieving the predefined MQSeries Queue definition from
the local INDI context of the server.

Queue mgQueue = (Queue)ct x. |l ookup("mQ');

4.1.3 Create Producer

The connection factory that was obtained from JNDI may be used to create the connection,
session and producer objects required to send a message to the MQSeries queue.

QueueConnecti on mMConn = nQCF. cr eat eQueueConnecti on();

ngConn. start ();

QueueSessi on ngSessi on = ngConn. cr eat eQueueSessi on(true,
Sessi on. AUTO_ACKNOW.EDGE) ;

QueueSender nmgSender = mmSessi on. cr eat eSender (MQueue) ;

Thecr eat eQueueSessi on() method is shown here being called with the values of t r ue for
thetransact ed parameter and Sessi on. AUTO_ACKNOW_EDGE for the acknow edgeMode
parameter. These parameters are essentially ignored as internally a XxAsessi on object is
created from which the Sessi on object is created that is then returned to the caller.
Alternately, the IMS XA methods may be used to create the connection, session and
producer objects as shown below. Note that if the get XAQueueSessi on() method is called
on the xAQueueConnect i on object, then an additional call to get QueueSessi on() onthe
XAQueueSessi on object isrequired. The two approaches are essentially equivalent with
regard to the objects that are created internally and from the point of view of the WLS TM.

XAQueueConnecti on ngXAConn = ngQCF. cr eat eXAQueueConnection();
ngXAConn. start ();

XAQueueSessi on ngXASessi on = ngConn. cr eat eXAQueueSessi on() ;
QueueSessi on ngSessi on = nXASessi on. get QueueSessi on();
QueueSender mgSender = mmSessi on. cr eat eSender (nMQuUeue) ;

4.1.4 Sending a Message in a Transaction

Once the session and producer objects have been created, messages may be sent to the
MQSeries queue as part of aglobal transaction. The following example shows how to
retrieve a UserTransaction object, start a WL S transaction, send a message to an MQSeries
gueue, and commit the transaction.

User Transaction ut = (UserTransaction) ctx.| ookup(
"javax/transaction/ User Transacti on");

ut. begin();

ngSender . send(nsg) ;

ut.commt();

This example shows a single resource being accessed within the scope of atransaction. In
this situation the WLS TM will perform a one-phase commit optimization with MQSeries.

4.1.5 Threading Issues

According to the IM S specification, Session objects are not intended for concurrent access
across multiple threads. The WLS MQSeries classes have the restriction of single-threaded
session access. If two threads infected by two separate transactions access the same session
object, aj avax. transacti on. xa. XAExcept i on may result. Each server execute thread
should obtain its own session object before performing any MQSeries IM S operationsin a
transaction.

4.1.6 Asynchronous Consumers

Asynchronous message delivery cannot participate in WLS global transactions. To use
asynchronous message delivery with WLS, anon-XA connection factory must be used to
create the session from which the consumer is created. Also, the MQSeries IMS
implementation requires that the MessageLi st ener be assigned to the MessageConsuner
prior to starting the connection.

4.2 Example Application
This section describes how to configure and run the provided example application, listed at
the end of this document. The example consists of a WLS startup class, MQSer i esHel per,

and a client application that makes RMI calls to a startup class instance running in WLS.
The RMI methods perform transactional operations with MQSeries.

4.2.1 Building

The example may be built by compiling the three Java files; MQSeriesHel per.java,
MQSeriesHelperimpl.java, and MQClient.java; and by running webl ogi c. r mi ¢ on the
MQSeriesHel perlmpl class.

javac MQXeri esHel per.java MXeri esHel perlnpl.java MXlient.java
java webl ogi c. rm c -nomangl ednames MSeri esHel per | npl

Copy the resulting “.class’ filesto a directory that isin the CLASSPATH environment
variable.

4.2.2 Configuring and Starting WebLogic

A startup class definition must be added to the WLS configuration file. Add the following
entry to the config.xml file for the domain. Modify the Targets value to be the actual name
of the server being booted.

<St artupCl ass
Name="MQSeri esHel per"
Tar get s="ser ver Name"
Cl assNane="MXSer i esHel perlnpl"/>

Add aWLS JMS Server definition to the configuration. Modify the Targets value to be the
actual name of the server being booted. Create a directory under the server directory named
myfilestore.

<JMsSer ver Name="TestJMSServer" Targets="server Name"
Store="Fil eStore">
<JMSQueue Name="W.SQueue" JNDI Name="W.SQueue"/>

</ JMSSer ver >

<JMSConnecti onFactory Nanme="W.SCF" JNDI Name="W.SCF"
Targets="server1" UserTransacti onsEnabl ed="true"
XAConnect i onFact or yEnabl ed="t rue"/ >

<JMSFi | eStore Nane="Fil|l eStore" Directory="myfil estore"
JMSSer ver =" Test JMSServer "/ >

The following environment properties may be defined at server startup to control how the
MQSeriesHelper object behaves with respect to INDI providers, context names, etc. The
default values correspond to the configuration described in this document.

W sngs. ngs. i cf The initial context factory for the MQSeries INDI

provider. Default:
com sun. j ndi . f scont ext . Ref FSCont ext Fact ory

W sngs. ngs. providerurl The provider URL for the MQSeries INDI provider.
Default: fil e://1 ocal host/c:/ngseries/ JNDI

W sngs. W s. i cf Theinitial context factory for the WLS JNDI provider.
Default: webl ogi c. j ndi . WL.I ni ti al Cont ext Factory

W smgs. W s. providerurl The provider URL for the WLS JNDI provider. Defaullt:
t3://1ocal host: 7001

W sngs. ngs. myxaqcf The context name of the MQSeries
XAQueueConnectionFactory stored in the MQSeries
JNDI provider. Default: mgXAQCF

W sngs. ngs. ngqueue The context name of the MQSeries Queue stored in the
MQSeries INDI provider. Default: ngQ
W sngs. W s. mxaqcf The context name of the WLS

XAQueueConnectionFactory stored in the WLS JNDI

context. Default: W s ngXAQCF
W sngs. W s. resourcenane The resource name to be assigned to the WLS
XAQueueConnectionFactory. Default: MQSer i es

W sngs. w s. ngqueue The context name of the MQSeries Queue that is stored in
the local WLS JNDI context. Default: ngQ
W sngs. W s. gcf The context name of the WLS IMS

QueueConnectionFactory stored in the local context.
Default: W.SCF

W sngs. Wi s. queue The context name of the WLS JM S queue stored in the
local INDI context. Default: W.SQueue

In order to modify the default configuration settings for the M QSeriesHel per object, define
the appropriate properties in the script used to boot WLS. For example, to change the WLS
provider URL to t3://localhost:8801, add the following j ava command-line.

java —-DwWl snrgs. W s. provi derurl =t3://1 ocal host: 8801 ... webl ogic. Server

After changing the server configuration and updating the WLS startup script, start the server.

4.2.3 Invoking the Client

After the server has booted, invoke the MQcl i ent client. The client makes RMI calls to the
MQSer i esHel per startup class to perform transactional MQSeries operations. The
application takes two arguments, the WLS server URL and a string message.

java Ml ient t3://1ocal host: 7001 "MXeries test nessage"

The client will invoke the MQSeriesHel per object to enqueue a WL S IM S message within a
transaction. Another remote method is called to retrieve the message from the WLS IMS
gueue and send it to the MQSeries queue within atransaction. Finaly, the client invokes
another method to transactionally receive the message from the MQSeries queue.

Expected client output:

sendi ng: "MXSeries test nessage"
received: "MXeries test nessage"”

Expected server output:

Bridged: "MXeries test nessage”

4.2.4 Verify Transaction Participation

In order to determine if the MQSeries queue operations performed by running the example
actually participated in global transactions, check the statistics of the registered resources.
This may be performed by using the WLS Console and viewing the [domain] > Servers >
[server] > Monitoring > JTA > Transaction by Resource pane, or by running the

10

webl ogi ¢. Admi n command-line utility. The utility may be invoked as follows, substituting
configuration-specific values for the url, username and password arguments:

java webl ogic. Admin —url t3://local host: 7001 \
—user name system —password gunbyl1234 \
GET —pretty —type Transacti onResour ceRunti nme

The output of this command displays the Tr ansact i onResour ceRunt i re MBeans that
represent registered resources with the WLS TM. The attributes of these MBeans are
primarily statistics that indicate the number of transactions processed, and how many were
committed, rolled back, etc. After running the example application, the output should look
something like the following.

MBeanNane:
"ga: Locati on=server 1, Nane=JTAResour ceRunti me_MQSeri es, Server Runti ne=server
1, Type=Transacti onResour ceRunti ne"
Cachi ngDi sabl ed: true
Name: JTAResour ceRunti me_MXeri es
bj ect Nare: JTAResour ceRunti ne_MJSeri es
Regi stered: false
Resour ceNane: MQSeri es
Transacti onCommi tt edTot al Count: 2
Transacti onHeuristicCommit Total Count: O
Transacti onHeuri sti cHazardTot al Count: O
Transacti onHeuri sticM xedTot al Count: 0
Transacti onHeuri sti cRol | backTot al Count: 0
Transacti onHeuristicsTotal Count: O
Transacti onRol | edBackTot al Count: 0
Transacti onTot al Count: 2
Type: Transacti onResour ceRunti ne
MBeanNane:
"ga: Locati on=server 1, Nane=JTAResour ceRunti me_JMS Fi |l eSt ore, Server Runti ne=s
erver 1, Type=Transacti onResour ceRunt i ne"
Cachi ngDi sabl ed: true
Name: JTAResourceRuntinme_JMS Fil eStore
Obj ect Nane: JTAResourceRuntine_JMS FileStore
Regi stered: false
ResourceNane: JMS Fil eStore
Transacti onCommi tt edTot al Count: 2
Transacti onHeuri sticConm t Total Count: O
Transacti onHeuri sti cHazardTot al Count: O
Transacti onHeuri sticM xedTot al Count: 0
Transacti onHeuri sti cRol | backTot al Count: O
Transacti onHeuristicsTotal Count: O
Transacti onRol | edBackTot al Count: 0
Transacti onTot al Count: 2
Type: Transacti onResour ceRunti ne

There are two MBeans displayed in the above output; one for the MQSeries resource and one

for the WLS IMS file store. Each MBean should have the value of two for both the
Transacti onTot al Count and Tr ansacti onConmi t t edTot al Count attributes. These values

11

will increase by two each time the example is executed. The WLS JM S resource participates
in two transactions, a one-phase transaction to enqueue the initial message and a two-phase
transaction to dequeue as part of the transfer to the MQSeries queue. The MQSeries IMS
resource also participates in two transactions, a two-phase transaction to transfer a message
from the WL S IM S queue to the MQSeries queue and a one-phase transaction to dequeue
from the MQSeries queue.

5 Restrictions and Limitations
The following limitations and restrictions apply when utilizing MQSeries IMS with WLS.

The MQSeries IMS integration with WL S is only supported with the IBM MQSeries
JMS driver. The MQSeries Base Java driver is not supported.

The MQSeries IMS integration with WL S was tested using the “bindings’ connection
mode only. The MQSeries IMS driver does not provide support for distributed
transactions in the “client” connection mode. For a discussion of MQSeries driver
connection modes, refer to [2], Part 1, Chapter 1, Connection options.

M QSeries destinations must be accessed from applications components running in WLS
in order for updates to participate in distributed transactions. Server components include
such constructs as startup classes, RMI objects, EJBs, servlets, etc. Thisrestriction is due
to the WL S requirement that resource managers only be registered on a server instance.
Client applications may update M QSeries destinations outside of a global transaction by
using the standard MQSeries connection factories.

Message Driven Beans cannot be invoked from an MQSeries destination as part of a
WLS distributed transaction. Refer to [6], “Can you use aforeign IMS provider to drive
an MDB transactionally?’ for more information.

Multiple sessions derived from the same MQSeries XA connection factory should not be
used in the same transaction. 1f multiple sessions to the same M QSeries Queue Manager
must be used, define separate XA connection factories and assign unique resource hame
attributes.

Consideration should be given to the following MQSeries restrictions from “MQSeries
System Administration, Part 1, Chapter 14, External syncpoint coordination”:

Only one queue manager at atime may participate in a transaction coordinated by
an instance of an external syncpoint coordinator: the syncpoint coordinator is
effectively connected to the queue manager, and is therefore subject to the rule
that only one connection at atime is supported.

A gueue manager whose resource updates are coordinated by an external
syncpoint coordinator must be started before the external syncpoint coordinator
starts. Similarly, the syncpoint coordinator must be ended before the queue
manager is ended.

12

If you are using an external syncpoint coordinator that terminates abnormally, you
should stop and restart your queue manager before restarting the syncpoint
coordinator to ensure that any messaging operations uncommitted at time of the
failure are properly resolved.

6 Troubleshooting
This section describes common problems when using MQSeries IMS with WLS.

1. Producer/Consumer operation results in JM SException: javax.jms.JM SException:
MQJIMS2007: failed to send message to MQ queue, Linked exception:
com.ibm.mg.MQException: Completion Code 2, Reason 2072
(MQRC_SYNCPOINT_NOT_AVAILABLE)

Thisindicates that a M QSeries JM S operation was performed outside of aglobal transaction while using an
XASession. All XA Session producer/consumer operations must be invoked within aglobal transaction.

7 Glossary

Coordinator The entity that drives the two-phase commit protocol.

Distributed Transaction A global transaction involving two or more resources
across one or more server instances.

Dynamic Enlistment Transaction enlistment of a resource that happens only
when the resource is accessed.

Global Transaction A transaction that is managed by a transaction manager

and is associated with a thread of control. It may
encompass one or more participating resources that are
infected with the transaction when they are accessed by an
application component. The transaction manager
coordinates the commit processing using the two-phase
commit protocol.

One-phase Commit An optimization of the two-phase commit protocol
whereby the prepare phase is skipped when there is only
one participating resource.

Resource Manager An entity that manages persistent data, such as a queuing
system or database, which can participate in two-phase
commit transactions.

Resource Registration The mechanism whereby a resource manager is registered
with a transaction manager.
Static Enlistment Transaction enlistment of a resource that occurs whenever

atransaction is started or becomes active in athread. This
type of enlistment is typicaly only used with resources
that do not support dynamic enlistment.

Transaction Enlistment The mechanism whereby a resource manager is associated
with the transaction context of the caller.
Transaction Manager Process that manages the transaction lifecycle and

subordinate resources, and coordinates the two-phase

13

commit protocol. Also referred to in the MQSeries
documentation as an external Syncpoint Coordinator.

Two-phase Commit A protocol for ensuring that updates to multiple resource
managers, within the scope of atransaction, are
permanently stored or abandoned as a unit. A coordinator
instructs each transaction participant to prepare. If any
participant responds negatively, the transaction will be
aborted (rolled back) and each participant will be notified
to revert its changes. If all participants agree, the
coordinator will write a commit record to permanent store.
At this point the transaction is committed. The
coordinator is then responsible for informing each
participating resource of the outcome so that its changes
will be made durable.

8 References and Related Documents

[1] Using foreign IMS providers with WLS, BEA Developer Center,
http://devel oper.bea.com/docs/imsproviders.isp

[2] Using Java, MQSeries Manuals, IBM Corporation, Document Number SC34-5456-05
[3] MQSeries System Administration, Second edition (March 1999), IBM Corporation

[4] Java Transaction APl (JTA) Specification (http://java.sun.conVproducts/jta)

[5] X/Open CAE Specification — Distributed Transaction Processing: The XA
Specification, X/Open Document No. XO/CAE/91/300 or ISBN 1 872630 24 3

[6] WebLogic Server 6.1 IMS FAQ, http://e-docs.bea.com/wls/docs61/fag/jms.html

9 Example Source Code

MQSeriesHelper.java:

i mport webl ogi c.rm . Renote;
i nport webl ogi c. rm . Renpt eExcepti on

/**

* Renmote interface for the MXSeri esHel per startup-class/RM object.
*/

public interface MXeriesHel per extends Renpte

{

/**

* Sends a Text Message to a WS queue transactionally.

14

}
M

*/
voi d sendW.SMessage(String nsg) throws RenpteException;

/**

* For the nunber of nessages specified, starts a transaction
* dequeues from WS queue, enqueues nessage to MXSeries

* queue and conmits the transaction.

*/

voi d bridgeW.S2MQXS(i nt numvsgs) throws RenpteException;

/**

* Receives a nmessage froman MXeries queue and returns
* the text.

*/

String recei veMQVessage() throws RenpteException;

QSeriesHelperImpl java:

i mport java.util.Hashtable;

i mport javax.j ms. Message;

i mport javax.j ms. Queue;

i nport javax.j ms. QueueRecei ver;

i nport javax.j ms. QueueSender ;

i mport javax.j ns. QueueSessi on;

i mport javax.j ns. Sessi on;

i mport javax.]j ns. Text Message;

i mport javax.j nms. XAQueueConnecti on;

i mport javax.]j ms. XAQueueConnecti onFactory;
i mport javax.nam ng. Cont ext;

i mport javax.nam ng.Initial Context;

i mport javax.nam ng. Nam ngExcepti on;

i nport javax.transaction. User Transacti on;

i mport webl ogic.jns.foreign.ngseries. JNDI Mapper ;
i mport webl ogi c.jndi.Environnment;

i mport webl ogi c. rnm . Renot eExcepti on;

i mport webl ogi c. transacti on. TxHel per;

/

* X X X X X

*

*

*

*

| mpl ement ati on of the MQSeriesHel per startup-class/renote interface.
VWhen the startup class is invoked during server boot, an instance
will be bound in the | ocal JNDI context and MQXSeries objects wll
be copied fromthe MXeries JNDI provider to the |local context.
As part of the mapping of JMS objects a W.S MXeries
XAQueueConnectionFactory will be created with the specified
resource name attribute.

/

public class MXeriesHel perlnpl inplenments MXeriesHel per {

private static String ngl CF;
private static String ngProvi der URL;
private static String w I CF;

private stati
private stati
private stati
private stati

String w Provider URL;
String ngMXAQCFNane;

String ngMQQueueNane;
String w MOXAQCFNane;

OO0 0O00OO0

15

private static String w MQueueNane;
private static String w QCFNamne;
private static String wW QueueNane;
private static String w ResourceNane;

/**

* | nvoked during server boot. Registers instance in |oca
* WL.S JNDI context to serve RM requests. Reads system properties
* if any to override default settings. Binds MXeries object in
* | ocal JNDI context.
*/
public static void main(String[] argv) throws Exception
{
/1 advertise in W.S JND
MSer i esHel perlnmpl inpl = new MXSeri esHel perlnpl ();
Context ctx = new Initial Context();
ct x. bi nd(" MXSeri esHel per", inpl);
ctx.close();
Systemout.println("*** MXeriesHel per bound ***");

get SystenProperties();

/1 map MQSeries objects
JNDI Mapper mapper = new JNDI Mapper (ngl CF, ngProvi der URL) ;
mapper . map(ngMIXAQCFNarme, w MQXAQCFNane, w Resour ceNane);
mapper . mp(ngMQueueNarme, wW MQueueNane) ;
}
/**
* @ee MXEeriesHel per#sendW.SMessage
*/
public void sendW.SMessage(String nsgText) throws RenpteException
{
JMSOhj ect wijnms = null
QueueSessi on session = null
QueueSender sender = null

try {
W jnms = new JMSCbj ect (W I CF, w Provider URL, w QCFNane,
w QueueNane) ;

session = W j ns. get Sessi on();
sender = W j ns. get Sender () ;

Text Message nsg = session. creat eText Message() ;
nsg. set Text (nmsgText);

User Transaction ut = getUser Transaction();

ut. begi n();
sender. send(nsq) ;
ut.conmt(); // 1PC

} catch (Exception e) {
Systemerr.printin(e.toString());
e.printStackTrace();

t hrow new Renot eException(e.toString(), e);

16

} finally {
W j ms. cl eanup();
}
}

/**
* @ee MXBeriesHel per#bri dgeW.S2MQS
*/
public void bridgeW.S2MQS(int numvsgs) throws Renpt eException
{
JMSOhj ect Wijnms = null;
QueueRecei ver W Receiver = null;
JMSObj ect mgjms = nul |;
QueueSender mgSender = nul | ;
User Transacti on ut = getUserTransaction();

try {
W jnms = new JMSObj ect (W | CF, W Provi der URL, w QCFNane,
W QueueNare) ;
W Receiver = w jms. get Receiver();

mgj s = new JMSObj ect (W I CF, w Provider URL, w MQXAQCFNane,
w MQueueNane) ;
ngSender = nyj ns. get Sender () ;

for (int i=0; i<nunmvsgs; i++) {
ut . begin();
Message msg = W Recei ver.receive();
ngSender . send(nmsg) ;
ut.commt(); // 2PC
if (msg instanceof TextMessage) {
Systemout.println("bridged: \"" + ((TextMessage)nsg).get Text ()
AR
}

}
} catch (Exception e) {

e.printStackTrace();
t hrow new Renot eException(e.toString(), e);

} finally {
if (Wjms I'= null) wjns.cleanup();
if (mgjnms !'= null) nygjns.cleanup();
}
}
/**
* @ee MXEeriesHel per#recei veMAvessage
*/

public String recei veMQVessage() throws RenoteException
{

JMSOhj ect ngjns = null;

QueueSessi on session = null;

QueueRecei ver receiver = null;

try {
ngj ms = new JMSObj ect (W | CF, W Provi der URL, w MQXAQCFNane,
w MQueueNarne) ;

17

}

sessi on = nyj ms. get Sessi on();
recei ver = nygj ns. get Recei ver();

User Transacti on ut = getUser Transaction();

ut. begin();
Message neg = receiver.receive();
ut.conmt(); // 1PC

if (msg == null || !(nsg instanceof TextMessage)) {
return "[not a TextMessage]";

}

Text Message text Msg = (Text Message) nsg;
return textMsg. get Text();
} catch (Exception e) {
e.printStackTrace();
t hrow new Renot eException(e.toString(), e);
} finally {
ngj ms. cl eanup() ;
}

private static void getSystenProperties()

{

}

ngl CF = System get Property(

"W snmgs. mgs.icf", "comsun.jndi.fscontext.Ref FSCont ext Factory");
ngProvi der URL = Syst em get Property(
"W sngs. ngs. providerurl ™, "file://local host/c:/ngseries/JNDI");
W I CF = System get Property(
"Wsnmgs. W s.icf”, "weblogic.jndi.W.Initial ContextFactory");
W Provi der URL = System get Property(
"W sngs. W s. providerurl”, "t3://local host:7001");
g MOXAQCFNane System get Property("w sngs. ngs. mgxaqcf ", " mXAQCF") ;

ngMQQuUeueNane System get Property("w sngs. ngs. ngqueue”, "mQ');

w MQXAQCFNarre System get Property("w smgs. W s. ngxaqcf", "w snmmXAQCF");

W ResourceNanme = System getProperty("w sngs. w s. resour cenane",
"MXeries");

w MQueueNanme = System get Property("w snmgs. W s. ngqueue”, "ngQ');

W QCFNanme = System get Property(
"W snmgs.wW s. qcf", "W.SCF");

W QueueNarme = System get Property(
"W snmgs. W s. queue”, "W.SQueue");

private UserTransacti on getUser Transacti on()

{

}

/1 could also do JNDI | ookup of javax.transaction. UserTransaction
/1 in local WS context
return TxHel per. getUserTransaction();

cl ass JMsOhj ect

{

18

private Initial Context ctx;

private Queue queue;

private XAQueueConnection connection
private XAQueueConnectionFactory factory;
private QueueRecei ver queueRecei ver;
private QueueSender queueSender

private QueueSessi on session;

JMSOhj ect (String icf, String url, String qcf, String gnhane)
t hrows Exception
{

/[l Get the initial context

Hasht abl e env = new Hasht abl e();

env. put (Cont ext. | NI TI AL_CONTEXT_FACTORY, icf);

env. put (Cont ext . PROVI DER_URL, url);

env. put (Cont ext . REFERRAL, "throw");

ctx = new I nitial Context(env);

factory = (XAQueueConnecti onFactory)ctx. | ookup(qcf);

connection = factory. creat eXAQueueConnection();

sessi on = connecti on. creat eXAQueueSessi on() . get QueueSessi on();
queue = (Queue)ct x. | ookup(gnane);

connection.start();

gueueSender = session. createSender (queue);

gueueRecei ver = session. creat eRecei ver (queue);

}

QueueSessi on get Sessi on()

{
}

QueueSender get Sender ()
{

}

QueueRecei ver get Receiver()

{
}

voi d cl eanup()

{

return session;

return queueSender;

return queueRecei ver;

try {
gueueSender . cl ose();

gueueRecei ver. cl ose();
sessi on. cl ose();
connection. cl ose();

} catch (Exception e) {
e.printStackTrace();

19

MQClient.java:

i nport webl ogi c.j ndi. Environnent;

/**

* Asinple RM client that invokes the MXeriesHel per startup-class/
* RM object to transactionally send and recei ve Text Messages to and
* from WS and MXSeries queues using standard JMS interfaces.

*/

public class MXient

{
/

* X X X Xk X X X X X X

~

*

After obtaining a stub to the MQSeriesHel per RM object in the
speci fied W.S server, three renpte nethods are invoked. The first
met hod enqueues a Text Message, based on the provided string, to a
WLS queue in a one-phase transaction. The second nethod, within
the scope of a transaction, receives the nessage fromthe WS queue
and sends it to an MQXeries queue (two-phase conmit). The third
met hod call receives the nmessage fromthe MXeries queue in a

one- phase transaction

<p>

Usage: java MQClient server URL nessageText

public static void nmain(String[] argv) throws Exception

{

String serverURL = nul |
String nessageText = null
if (argv.length = 2) {
System out . printl n(
"usage: java MXlient <serverURL> <nessageText>");
Systemexit(1);

server URL = argv[O0];
messageText = argv[1];

/1 1 ookup RM object

Envi ronment env = new Environnent();

env. set Provi derUrl (server URL);

Context ctx = env.getlnitial Context();

MSer i esHel per hel per = (MXSeri esHel per)
ct x. | ookup(" MXSeri esHel per");

Systemout.println("sending: \"" + nmessageText + "\"");

/1 enqueue nessage string to WS queue
hel per. sendW.SMessage(nessageText) ;

/'l dequeue from WLS queue and enqueue to MJSeries queue
hel per. bri dgeW.S2MJS(1) ;

/1 dequeue nmessage from MQSeries queue

Systemout.printin("received: \"" + hel per.recei veMJdVessage() +
ARDE

20

21

