MQ Message
Compression
Overview

Capitalware Inc.
Unit 11, 1673 Richmond Street, PMB524
London, Ontario N6G2N3

>~ Canada
sales@capitalware.com
ap l ta lwa re https://www.capitalware.com

Inc.

Last Updated: January 2021.
© Copyright Capitalware Inc. 2020, 2021.

MQ Message Compression Overview Page ii

Table of Contents

1 INTRODUCGCTION.....cccccerrrrrrneeeeeccccsssssasssseececcssssssssssssssess 1
L] OVERVIEW. ..uutvveeiieeeeeieiitteeeeeeeeeeesetaaeeeeeeeeeeeetaaaeeeeeeeeesesssaaeeeeseeeeesasasaaeeseeseesnssssssssssssnannnnnnnnes 1
1.2 EXECUTIVE SUMMARY ...uutiieeeeeeeeeeeeeeeeeeeseeeeeeeeeeesesesesssesseesesssssesesssssssssssssssssesasssassssssssssnnnseseeees 5
1.3 PREREQUISITES...cceeeiiieiurrreeeeeeeeeeisttereeeseseeeeeissseeeeeseeesesssssseesseseesinssssssesesesssmmsssssssessessesenssrenns 6

1.3.1 OPratiNG SYSIEML......cc.eooiiiiiiiiiiiii ettt 6
L. 3.2 IBM MQ......cooooeeeeee ettt et e et e ettt a e e e aaae e 7
1.3.3 WIRAOWS 32Dl 7
L.3.4 WIBAOWS O4-DiIl.......ooooooeiioeeeeeeeeeeeee ettt 7

MQ Message Compression Overview Page iii

1 Introduction

1.1 Overview

MQ Message Compression (MQMC) provides compression for MQ message data while it
resides in a queue or topic and in the MQ logs (i.e. all data at rest). Data compression is the
process of modifying and/or converting the structure of bits of data so that it consumes less space
in memory and/or on disk.

Question: Would you trade a little CPU time to drastically reduce the disk 1/0 time?

MQMC has implemented 7 lossless compression algorithms:

LZ4 is a lossless data compression algorithm that is focused on compression and
decompression speed. It belongs to the LZ77 family of byte-oriented compression
schemes. LZ4 algorithm is incredibly fast. MQMC implemented the LZ4 project.

LZW encodes sequences of 8-bit data as fixed-length 12-bit codes. I used Michael
Dipperstein’s implementation of LZW (Lempel-Ziv-Welch). MQMC implemented
LZW from Michael Dipperstein's lzw project.

LZMA uses a dictionary compression algorithm, whose output is then encoded with a
range encoder, using a complex model to make a probability prediction of each bit
(Lempel-Ziv—Markov). MQMC implemented LZMA SDK from 7-Zip.

o LZMA FAST uses LZMA SDK with a Level set to 4.
o LZMA_BEST uses LZMA SDK with a Level set to 5.

RLE (Run Length Encoding) encodes sequences of the same data value occurring over
many consecutive data elements that are stored as a single data value and count.

zlib only supports one algorithm, called DEFLATE, which uses a combination of a
variation of LZ77 (Lempel-Ziv 1977) and Huffman coding. MQMC implemented zlib

from Rich Geldreich's miniz project.

o ZLIB FAST uses zlib with a Level of Z BEST SPEED.
o ZLIB BEST uses zlib with a Level of Z BEST COMPRESSION.

MQ Message Compression Overview Page 1

https://github.com/richgel999/miniz
https://www.7-zip.org/sdk.html
https://github.com/michaeldipperstein/lzw
http://lz4.github.io/lz4/
https://en.wikipedia.org/wiki/Lossless_compression

Each queue in a queue manager is assigned two buffers to hold messages (one for persistent
messages and one for non-persistent messages). The persistent queue buffer size is specified
using the tuning parameter DefaultPQBufferSize. The non-persistent queue buffer size is
specified using the tuning parameter DefaultQ BufferSize.

* DefaultPQBufferSize has a default value of 128KB for 32-bit Queue Managers and
256KB for 64-bit Queue Managers.

* DefaultQBufferSize has a default value of 64KB for 32-bit Queue Managers and 128KB
for 64-bit Queue Managers.

Here’s the process of the queue manager handling an application putting a message to a queue:
* The message will be put into the buffer of the waiting application if it can fit.
» Ifthat fails, the queue manager tries to write the message to the queue buffer, if it can fit.

* Otherwise, it is written to the queue file.

Here’s the process of the queue manager handling an application getting a message from a
queue:

* When the consumer (non-waiting) gets a message from a queue, the queue manager will
retrieve it from the queue buffer, if available, otherwise from the queue file.

* If the consumer was waiting for a message, then the queue manager will attempt to write
it directly to the applications buffer.

Persistent messages are always written to the recovery log files.

MQ Message Compression Overview Page 2

Here is a screen-shot from Chris Frank’s MQ Technical Conference 2016 session called: More
Mysteries of the MQ Logger (page 9) that provides a high-level view of disk I/O.

MQ 101 - How are Messages Persisted?

Queue Files Logs

Application Queaus ﬁ
Program Manager S

a L

Persistent A P

B essage i
MOPUT e i

L susnsfansansannnnnnnt "

<k CCAC i = All messages regardless of persistence may potentially be
written to disk

= Specifically to files that back the gqueues
» Persistent messages are afways written to disk

] :::;gﬂsm ’ + Specifically to the Recovery log

e > | i = This has implications for performance
- CC/RC

» Mon-persistent messages can “persist” as well:
» NPMCLASS=HIGH on queue definition
v Still never written to Recovery Log!
» Even if put under syncpoint
» Thus are nol “recoverable”

In the picture, the solid line shows the queue manager writing the messages to the recovery log
files. The dotted lines mean that the message may or may not be written to the queue file. See the
above for the scenarios of when/why the queue manager would write a message to the queue file.

The goal of MQMC is to improve the disk I/O (Input/Output) speed by compressing the message
data when the queue manager is writing to the queue buffers, queue backing files and the
recovery log files.

MQMC is an MQ API Exit that operates with IBM MQ v7.1, v7.5, v8.0, v9.0, v9.1 and v9.2 in
Windows, Unix, IBM i (0S/400) and Linux platforms.

On AIX, HP-UX, Linux, Solaris and Windows, MQMC can be configured and used with a non-
default installation of MQ in a multi-install MQ environment.

Note: Raspberry Pi is a Linux ARM 32-bit OS (Operating System). Hence, simply follow the
Linux 32-bit instructions for installing and using the solution on a Raspberry Pi.

MQ Message Compression Overview Page 3

https://www.mqtechconference.com/sessions_v2016/MQTC_v2016_More_Mysteries_of_the_IBM_MQ_Logger_final.pdf
https://www.mqtechconference.com/sessions_v2016/MQTC_v2016_More_Mysteries_of_the_IBM_MQ_Logger_final.pdf

MQMC includes an auxiliary program called: testcmprsn. The testcmprsn program allows the
end-user to test various types of messages to see which types of messages would benefit from
message compression.

Here’s an example of testcmprsn program being run against a 9.17MB XML file (huge file):

~/test> ./testcmprsn very_lrg_msg.xml
testcmprsn version 1.0.0.0 (Linux64) {oct 3 2020}

very_lrg_msg.xml size is 9614354 (9.17MB)
Time taken to perform memcpy() is 4.8770ms

Algorithm

Lz4
LZMA Fast
LZMA Best
LZw
RLE
ZLIB Fast
ZLIB Best

Compressed

112253
32872
27675

287184

13213500

240612

83375

testcmprsn 1is ending.

Size
(109.62KB)
(32.10KB)
(27.03KB)
(280.45KB)
(12.60MB)
(234.97KB)
(81.42KB)

Compression
Time in ms
3.4830
108.4230
1152.6960
203.0840
28.1200
28.3140
88.5010

Compression
Ratio
85.65 to
292.48 to
347.40 to
33.48 to

0.73 to
39.96 to
115.31 to

RPRRRRERER

Decompression

Time in ms
2.9540
11.0730
10.6730
80.8820
26.2680
11.2530
8.4590

MQ Message Compression Overview

Page 4

1.2 Executive Summary

MQMC is an MQ API Exit. The MQ API Exit is available in 3 forms:
» Windows DLL
» Shared library for AIX, HP-UX, Linux, and Solaris.
» IBM i exit module

The major features of MQMC are as follows:

» No application changes required

» All message data written to a selected queue and/or topic will be compressed (nothing
missed or forgotten)

» Compression/decompression algorithms used: LZ4, LZW, LZMA FAST,
LZMA BEST, RLE, ZLIB FAST & ZLIB BEST

» Standard MQ feature, GET-with-Convert, is supported

» Provides high-level logging capability for compression/decompression processing

MQ Message Compression Overview Page 5

1.3 Prerequisites

This section provides the minimum supported software levels. These prerequisites apply to
server-side installations of MQ Message Compression.

1.3.1 Operating System
MQ Message Compression can be installed on any of the following supported servers:

1.3.1.1 IBM AIX
» IBM AIX 6L version 6.1 or higher

1.3.1.2 HP-UX 1A64
» HP-UX v11.23 or higher

1.3.1.3 IBM i (OS/400)
» IBM i V6RI1 or higher

1.3.1.4 Linux x86
» Red Hat Enterprise Linux v5, v6, v7, v8
» SUSE Linux Enterprise Server v11, v12, v15

1.3.1.5 Linux x86_64 (64-bit)
» Red Hat Enterprise Linux v5, v6, v7, v8
» SUSE Linux Enterprise Server v11, v12, v15

1.3.1.6 Linux on POWER
» Red Hat Enterprise Linux v6, v7, v8
» SUSE Linux Enterprise Server v12, v15

1.3.1.7 Linux on zSeries (64-bit)
» Red Hat Enterprise Linux v6, v7, v8
» SUSE Linux Enterprise Server v12, v15

1.3.1.8 Raspberry Pi (Linux ARM 32-bit)
» Raspberry Pi OS v9 or higher

1.3.1.9 Sun Solaris
> Solaris SPARC v10 & v11
» Solaris x86 64 v10 & v11

1.3.1.10 Windows

» Windows 2008, 2012 or 2016 Server (32-bit & 64-bit)
» Windows 7, 8, 8.1 or 10 (32-bit & 64-bit)

MQ Message Compression Overview Page 6

1.3.2 IBM MQ

> IBM MQ v7.1,v7.5, v8.0, v9.0, v9.1 and v9.2 (32-bit and 64-bit)

Operating System

MQ v7.1,v7.5, v8.0, v9.0, v9.1 and v9.2

AIX v6.1 or higher

32-bit & 64-bit

HP-UX 1A64 v11.23 or higher

32-bit & 64-bit

IBM i (0S/400) 64-bit
Linux x86 32-bit
Linux x86 64 32-bit & 64-bit
Linux on POWER 32-bit & 64-bit
Linux on zSeries 32-bit & 64-bit
Raspberry Pi ARM 32-bit

Solaris SPARC v10 & v11

32-bit & 64-bit

Solaris x86 64 v10 & v11

32-bit & 64-bit

Windows 2008, 2012, 2016, 7, 8, 8.1 & 10

32-bit & 64-bit

1.3.3 Windows 32-bit

The following is the software prerequisite for Windows 32-bit:

* Microsoft Visual C++ 2010 Redistributable Package (x86)
https://www.microsoft.com/en-ca/download/details.aspx?id=5555

1.3.4 Windows 64-bit

The following are the software prerequisite for Windows 64-bit:

* Microsoft Visual C++ 2010 Redistributable Package (x64)
https://www.microsoft.com/en-ca/download/details.aspx?id=14632

If local 32-bit applications connect in bindings mode to the queue manager then the following

needs to be also installed:

* Microsoft Visual C++ 2010 Redistributable Package (x86)
https://www.microsoft.com/en-ca/download/details.aspx?id=5555

MQ Message Compression Overview

Page 7

	1 Introduction
	1.1 Overview
	1.2 Executive Summary
	1.3 Prerequisites
	1.3.1 Operating System
	1.3.1.1 IBM AIX
	1.3.1.2 HP-UX IA64
	1.3.1.3 IBM i (OS/400)
	1.3.1.4 Linux x86
	1.3.1.5 Linux x86_64 (64-bit)
	1.3.1.6 Linux on POWER
	1.3.1.7 Linux on zSeries (64-bit)
	1.3.1.8 Raspberry Pi (Linux ARM 32-bit)
	1.3.1.9 Sun Solaris
	1.3.1.10 Windows

	1.3.2 IBM MQ
	1.3.3 Windows 32-bit
	1.3.4 Windows 64-bit

